Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. However, many studies investigated these effects using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical animal models and to examine the current standing of cannabinoids that are being tested in human cancer patients.
Non-melanoma skin cancer and other epithelial tumors overexpress cyclooxygenase-2 (COX-2), differentiating them from normal cells. COX-2 metabolizes arachidonic acid to prostaglandins including, the J-series prostaglandins, which induce apoptosis by mechanisms including endoplasmic reticulum (ER) stress. Arachidonoyl-ethanolamide (AEA) is a cannabinoid that causes apoptosis in diverse tumor types. Previous studies from our group demonstrated that AEA was metabolized by COX-2 to J-series prostaglandins. Thus, the current study examines the role of COX-2, J-series prostaglandins, and ER stress in AEA-induced apoptosis. In tumorigenic keratinocytes that overexpress COX-2, AEA activated the PKR-like ER kinase (PERK), inositol requiring kinase-1 (IRE1), and activating transcription factor-6 (ATF6) ER stress pathways and the ER stress apoptosis-associated proteins, C/EBP homologous protein-10 (CHOP10), caspase-12, and caspase-3. Using an ER stress inhibitor, it was determined that ER stress was required for AEA-induced apoptosis. To evaluate the role of COX-2 in ER stress-apoptosis, HaCaT keratinocytes with low endogenous COX-2 expression were transfected with COX-2 cDNA or an empty vector and AEA-induced ER stress-apoptosis occurred only in the presence of COX-2. Moreover, LC-MS analysis showed that the novel prostaglandins, 15-deoxyΔ(12,14) PGJ2 -EA and Δ(12) PGJ2 /PGJ2-EA, were synthesized from AEA. These findings suggest that AEA will be selectively toxic in tumor cells that overexpress COX-2 due to the metabolism of AEA by COX-2 to J-series prostaglandin-ethanolamides (prostamides). Hence, AEA may be an ideal topical agent for the elimination of malignancies that overexpress COX-2.
Endocannabinoids are neuromodulatory lipids that regulate central and peripheral physiological functions. Endocannabinoids have emerged as effective antitumor drugs due to their ability to induce apoptosis in various cancer studies. The G-protein coupled cannabinoid receptors (CB1 and CB2) and the TRPV1 ion channel were reported to mediate the antiproliferative activity of endocannabinoids. However, receptor-independent effects also account for their activity. Our previous studies showed that the antiproliferative activity of anandamide (AEA) was regulated by cyclooxygenase-2 (COX-2) via induction of endoplasmic reticulum (ER) stress. We also determined that AEA induced oxidative stress. However, the role of oxidative stress, the cannabinoid receptors, and TRPV1 in AEA-induced ER stress-apoptosis was unclear. Therefore, the current study examines the role of oxidative stress in ER stress-apoptosis and investigates whether this effect is modulated by CB1, CB2, or TRPV1. In non-melanoma skin cancer (NMSC) cells, AEA reduced the total intracellular level of glutathione and induced oxidative stress. To evaluate the importance of oxidative stress in AEA-induced cell death, the antioxidants, N-acetylcysteine (NAC) and Trolox, were utilized. Each antioxidant ameliorated the antiproliferative effect of AEA. Furthermore, Trolox inhibited AEA-induced CHOP10 expression and caspase 3 activity, indicating that oxidative stress was required for AEA-induced ER stress-apoptosis. On the other hand, selective blockade of CB1, CB2, and TRPV1 did not inhibit AEA-induced oxidative stress or ER stress-apoptosis. These findings suggest that AEA-induced ER stress-apoptosis in NMSC cells is mediated by oxidative stress through a receptor-independent mechanism. Hence, receptor-independent AEA signaling pathways may be targeted to eliminate NMSC. © 2015 Wiley Periodicals, Inc.
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.