DNA sampled from the environment (eDNA) is a useful way to uncover biodiversity patterns. By combining a conceptual model and empirical data, we test whether eDNA transported in river networks can be used as an integrative way to assess eukaryotic biodiversity for broad spatial scales and across the land–water interface. Using an eDNA metabarcode approach, we detect 296 families of eukaryotes, spanning 19 phyla across the catchment of a river. We show for a subset of these families that eDNA samples overcome spatial autocorrelation biases associated with the classical community assessments by integrating biodiversity information over space. In addition, we demonstrate that many terrestrial species are detected; thus suggesting eDNA in river water also incorporates biodiversity information across terrestrial and aquatic biomes. Environmental DNA transported in river networks offers a novel and spatially integrated way to assess the total biodiversity for whole landscapes and will transform biodiversity data acquisition in ecology.
Losses and gains in species diversity affect ecological stability 1-7 and the sustainability of ecosystem functions and services 8-13. Experiments and models reveal positive, negative, and no effects of diversity on individual components of stability such as temporal variability, resistance, and resilience 2,3,6,11,12,14. How these stability components covary is poorly appreciated 15 , as are diversity effects on overall ecosystem stability 16 , conceptually akin to ecosystem multifunctionality 17,18. We observed how temporal variability, resistance, and overall ecosystem stability responded to diversity (i.e. species richness) in a large experiment involving 690 micro-ecosystems sampled 19 times over 40 days, resulting in 12939 samplings. Species richness increased temporal stability but decreased resistance to warming. Thus, two stability components negatively covaried along the diversity gradient. Previous biodiversity manipulation studies rarely reported such negative covariation despite general predictions of negative effects of diversity on individual stability components 3. Integrating our findings with the ecosystem multifunctionality concept revealed hump-and U-shaped effects of diversity on overall ecosystem stability. That is, biodiversity can increase overall ecosystem stability when biodiversity is low, and decrease it when biodiversity is high, or the opposite with a Ushaped relationship. Effects of diversity on ecosystem multifunctionality would also be hump-or U-shaped if diversity has positive effects on some functions and negative effects on others. Linking the ecosystem multifunctionality concept and ecosystem stability can transform perceived effects of diversity on ecological stability and may assist translation of this science into policy-relevant information. Ecological stability consists of numerous components including temporal variability, resistance to environmental change, and rate of recovery from disturbance 1,2,16. Effects of species losses and gains on these components are of considerable interest, not least due to potential effects on ecosystem functioning and hence the sustainable delivery of ecosystem services 1-13. A growing number of experimental studies reveal stabilising effects of diversity on individual stability components. In particular, higher diversity often, but not always, reduces temporal variability of biomass production 13. Positive effects of diversity on resistance are common, though neutral and negative effects on resistance and resilience also occur 9,13,19,20. While assessment of individual stability components is essential, a more integrative approach to ecological stability could lead to clearer conceptual understanding 15 and might improve policy guidance concerning ecological stability 16. Analogous to ecosystem multifunctionality 17,18 , a more integrative approach considers variation in multiple stability components, and the often-ignored covariation among stability components. The nature of this covariation is of paramount importance, as it defines whe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.