Supervised learning based methods for source localization, being data driven, can be adapted to different acoustic conditions via training and have been shown to be robust to adverse acoustic environments. In this paper, a convolutional neural network (CNN) based supervised learning method for estimating the direction-of-arrival (DOA) of multiple speakers is proposed. Multi-speaker DOA estimation is formulated as a multi-class multi-label classification problem, where the assignment of each DOA label to the input feature is treated as a separate binary classification problem. The phase component of the shorttime Fourier transform (STFT) coefficients of the received microphone signals are directly fed into the CNN, and the features for DOA estimation are learnt during training. Utilizing the assumption of disjoint speaker activity in the STFT domain, a novel method is proposed to train the CNN with synthesized noise signals. Through experimental evaluation with both simulated and measured acoustic impulse responses, the ability of the proposed DOA estimation approach to adapt to unseen acoustic conditions and its robustness to unseen noise type is demonstrated. Through additional empirical investigation, it is also shown that with an array of M microphones our proposed framework yields the best localization performance with M-1 convolution layers. The ability of the proposed method to accurately localize speakers in a dynamic acoustic scenario with varying number of sources is also shown.
In recent years, substantial progress has been made in the field of reverberant speech signal processing, including both single-and multichannel dereverberation techniques and automatic speech recognition (ASR) techniques that are robust to reverberation. In this paper, we describe the REVERB challenge, which is an evaluation campaign that was designed to evaluate such speech enhancement (SE) and ASR techniques to reveal the state-of-the-art techniques and obtain new insights regarding potential future research directions. Even though most existing benchmark tasks and challenges for distant speech processing focus on the noise robustness issue and sometimes only on a single-channel scenario, a particular novelty of the REVERB challenge is that it is carefully designed to test robustness against reverberation, based on both real, single-channel, and multichannel recordings. This challenge attracted 27 papers, which represent 25 systems specifically designed for SE purposes and 49 systems specifically designed for ASR purposes. This paper describes the problems dealt within the challenge, provides an overview of the submitted systems, and scrutinizes them to clarify what current processing strategies appear effective in reverberant speech processing.
A convolution neural network (CNN) based classification method for broadband DOA estimation is proposed, where the phase component of the short-time Fourier transform coefficients of the received microphone signals are directly fed into the CNN and the features required for DOA estimation are learned during training. Since only the phase component of the input is used, the CNN can be trained with synthesized noise signals, thereby making the preparation of the training data set easier compared to using speech signals. Through experimental evaluation, the ability of the proposed noise trained CNN framework to generalize to speech sources is demonstrated. In addition, the robustness of the system to noise, small perturbations in microphone positions, as well as its ability to adapt to different acoustic conditions is investigated using experiments with simulated and real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.