Vigna unguiculata is an important source of proteins and energy for humans and animals. However, postharvest losses caused by Callosobruchus maculatus can reach from 20 to 100% of stored seeds. In this study, the insecticide potential of compounds extracted from Himatanthus drasticus latex was assessed. The latex was extracted with ethanol (70%) and then partitioned through sequential use of hexane and chloroform. These fractions were investigated by chromatography to determine their chemical composition. Plumieride, identified in a hydroalcoholic subfraction, was tested for insecticidal activity against C. maculatus. The ethanolic fraction (LC 50 = 0.109; LC 90 = 0.106%) and the plumieride (LC 50 = 0.166; LC 90 = 0.167%) were lethal to larvae. Plumieride (0.25%) delayed larval development, and mortality reached 100%. Its inhibitory action on intestinal α-amylase from larvae was higher (89.12%) than that of acarbose (63.82%). Plumieride (0.1%) inhibited the enzyme α-amylase in vivo in the larval intestine. This result was confirmed by a zymogram test performed by SDS-PAGE when the enzyme electrophoresed on gel copolymerized with starch. When spread on seeds, the hydroalcoholic fraction (1.0%) reduced infestation. The loss of seed mass was 5.26% compared to the control (44.97%). The results confirm the effect of latex compounds in protecting stored seeds against weevil infestation.
Background :
The herbivores Danaus plexippus (Lepidoptera), Oncopeltus fasciatus and Aphis nerii (Hemiptera) are specialist insects that feed on Calotropis procera (Apocynaceae) (Sodom Apple). At least 35 chemically distinct cardenolides have been reported in C. procera. Objective We aimed to evaluate the interaction between cardenolides and Na+/K+ ATPases from herbivores.
Methods :
The Na+/K+ ATPases from these insects were modeled and docking studies were performed with cardenolides from C. procera.
Results :
The replacement of serine in sensitive Na+/K+ ATPase with histidine, phenylalanine and tyrosine in the structures examined suggests spatial impairment caused by interaction, probably making the herbivorous insects resistant against the cardenolides of C. procera. In addition, the ability of the insects to avoid cardenolide toxicity was not correlated with cardenolide polarity. Therefore, the plant fights predation through molecular diversity and the insects, regardless of their taxonomy, face this molecular diversity through amino acid replacements at key positions of the enzyme targeted by the cardenolides.
Conclusions :
The results show the arsenal of chemically distinct cardenolides synthesized by C. procera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.