We tested in a robotics experiment a dynamic neural field model for learning a precisely timed musical sequence. Based on neuro-plausible processing mechanisms, the model implements the idea that order and relative timing of events are stored in an integrated representation whereas the onset of sequence production is controlled by a separate process. Dynamic neural fields provide a rigorous theoretical framework to analyze and implement the necessary neural computations that bridge gaps between sensation and action in order to mediate working memory, action planing, and decision making. The robot first memorizes a short musical sequence performed by a human teacher by watching color coded keys on a screen, and then tries to execute the piece of music on a keyboard from memory without any external cues. The experimental results show that the robot is able to correct in very few demonstration-execution cycles initial sequencing and timing errors.
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
ABSTRACT:In the first stage of this research the proposal of the reinforced node used in space truss was presented. Computer simulations and experimental lab tests were performed with small changes on the staking flattened-end connections, such as reinforcement and eccentricity correction. The results showed 68% increase in the truss load carrying capacity when the proposed changes were applied. However, small prototypes measuring 4 m 2 were used for laboratory testing. In this paper, for proposal validation, the same research was developed, this time in prototypes with 54 m 2 . The outcome results of this research, confirmed a significant increase in the truss load carrying capacity. It is expected that factories can apply the reinforced node in space truss constructions to come.
Many of our sequential activities require that behaviors must be both precisely timed and put in the proper order. This paper presents a neuro-computational model based on the theoretical framework of Dynamic Neural Fields that supports the rapid learning and flexible adaptation of coupled order-timing representations of sequential events. A key assumption is that elapsed time is encoded in the monotonic buildup of self-stabilized neural population activity representing event memory. A stable activation gradient over subpopulations carries the information of an entire sequence. With robotics applications in mind, we test the model in simulations of a learning by observation paradigm, in which the cognitive agent first memorizes the order and relative timing of observed events and, subsequently, recalls the information from memory taking potential speed constraints into account. Model robustness is tested by systematically varying sequence complexity along the temporal and the ordinal dimension. Furthermore, an adaptation rule is proposed that allows the agent to adjust in a single trial a learned timing pattern to a changing temporal context. The simulation results are discussed with respect to our goal to endow autonomous robots with the capacity to efficiently learn complex sequences with time constraints, supporting more natural human-robot interactions.
Humans are experts in cooperating in a smooth and proactive manner. Action and intention understanding are critical components of efficient joint action. In the context of the EU Integrated Project JAST [16] we have developed an anthropomorphic robot endowed with these cognitive capacities. This project and respective robot (ARoS) is the focus of the video. More specifically, the results illustrate crucial cognitive capacities for efficient and successful human-robot collaboration such as goal inference, error detection and anticipatory action selection. Results were considered one of the ICT "success stories"[22].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.