Fabrication of microfluidic devices by excimer laser ablation under different atmospheres may provide variations in polymer microchannel surface characteristics. The surface chemistry and electroosmotic (EO) mobility of polymer microchannels laser ablated under different atmospheres were studied by X-ray photoelectron spectroscopy and current monitoring mobility measurements, respectively. The ablated surfaces of PMMA were very similar to the native material, regardless of ablation atmospheres due to the negligible absorption of 248-nm light by that polymer. The substrates studied that exhibit nonnegligible absorption at this energy, namely, poly(ethylene terephthalate glycol), poly(vinyl chloride), and poly(carbonate), showed significant changes in surface chemistry and EO mobility when the ablation atmospheres were varied. Ablation of these three polymer substrates under nitrogen or argon resulted in low EO mobilities with a loss of the well-defined chemical structures of the native surfaces, while ablation under oxygen yielded surfaces that retained native chemical structures and supported higher EO mobilities.
Ultrasensitive, near-infrared (NIR), time-resolved fluorescence is evaluated as a detection method for reading DNA hybridization events on solid surfaces for microarray applications. In addition, the potential of mulitiplexed analyses using time-resolved identification protocols is described. To carry out this work, a NIR time-resolved confocal imager was constructed to read fluorescence signatures from the arrays. The device utilized a 780-nm pulsed diode laser, a single-photon avalanche diode (SPAD), and a high-numerical-aperture microscope objective mounted in an epi-illumination format. Due to the small size of the components that are required to construct this imager, the entire detector could easily be mounted on high-resolution translational stages and scanned over the stationary arrays. The instrument response function of the device was determined to be 275 ps (fwhm), which is adequate for measuring fluorophores with subnanosecond lifetimes. To characterize the system, NIR dyes were deposited directly on different substrate materials typically used for DNA microarrays, and the fluorescence lifetimes of two representative dyes were measured. The fluorescence lifetime for aluminum tetrasulfonated naphthalocyanine was found to be 1.92 ns, and a value of 1.21 ns was determined for the tricarbocyanine dye, IRD800, when it was deposited onto poly(methyl methacrylate) (PMMA) and measured in the dry state. Finally, the imager was used to monitor hybridization events using probe oligonucleotides chemically tethered to a PMMA substrate via a glutardialdehyde linkage to an aminated-PMMA surface. The limit of detection for oligonucleotides containing a NIR fluorescent reporter was determined to be 0.38 molecules/microm2, with this detection limit improving by a factor of 10 when a time-gate was implemented. Fluorescence lifetime analysis of the hybridization events on PMMA indicated a lifetime value of 1.23 ns for the NIR-labeled oligonucleotides when using maximum-likelihood estimators.
A series of near-IR fluorescent dyes were prepared which contained an intramolecular heavy atom for altering the fluorescence lifetimes to produce a set of probes appropriate for base-calling in a single-lane DNA sequencing format. The heavy-atom modification consisted of an intramolecular halogen situated on a remote section of the chromophore in order to minimize the perturbation on the lifetimes and fluorescence quantum yields. In addition, the dye series possessed an isothiocyanate functional group to allow facile attachment to sequencing primers. The unconjugated dyes showed similar absorption and emission maxima (lambda abs = 765-768 nm; lambda em = 794-798 nm) as well as fluorescence quantum yields that were invariant, within experimental error, with the heavy atom. However, the lifetimes of these dyes were found to vary with the identity of the halogen substitution (I, tau f = 947 ps; F, tau f = 843 ps, measured in methanol), with an average variation within the dye series of 35 ps. The spectroscopic properties of the free dyes and the dyes conjugated to sequencing primers on the 5'-end of the oligonucleotide were determined in a DNA-sequencing matrix (denaturing gels containing formamide). The results indicated slight differences in the fluorescence properties of the free dyes compared to those of the dye/ primer conjugates in this particular matrix. Inspection of the ground-state absorption spectra showed significant aggregation for the free dyes in this solution, but the conjugated dyes exhibited no sign of aggregation due to the highly anionic nature of the oligonucleotide. The fluorescence lifetimes of the dye/primer conjugates demonstrated lifetimes which ranged from 735 to 889 ps, with an average variation of 51 ps, an adequate difference to allow facile discrimination of these dyes in DNA-sequencing conditions. In addition, the free solution electrophoretic mobilities of the native heavy-atom-modified dyes were found to be very similar. When the dye/primer conjugates were electrophoresed in a cross-linked polyacrylamide gel electrophoresis capillary column, they comigrated, indicating that, in single-lane sequencing applications, when utilizing these dyes, no postrun corrections would be required to correct for dye-dependent mobility shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.