This is an author version of the contribution published on:On the mechanochemical activation by ultrasound Cravotto G.; Calcio Gaudino E. ; Cintas P Chem. Soc. Rev., 2013,42, 7521-7534 The definitive version is available at:On the mechanochemical activation by ultrasound Cravotto G.; Calcio Gaudino E. ; Cintas P.
AbstractChemists have discovered, and recently actively exploited, the fact that subjecting certain molecules to ultrasound waves can bring about transformations that give insight into the correlation between classical tribological processes and the mechanical action caused by collapsing microbubbles when sonic waves propagate through a liquid medium. Chemical transformations induced by ultrasound take place in solution via mechanisms that are markedly different from those associated with molecular activation in the solid state. Both fields, however, share some striking similarities and numerous sonochemical reactions can be rationalized in purely mechanical terms. This tutorial review examines the tribochemical interpretation of sonochemical reactivity and how the multifaceted action of cavitational phenomena determines molecular evolution. A series of case studies involving solids, crystals, and polymers illustrate the mechanical properties of sound waves.
In recent years, chemistry in flowing systems has become more prominent as a method of carrying out chemical transformations, ranging in scale from microchemistry up to kilogram-scale processes. Compared to classic batch ultrasound reactors, flow reactors stand out for their greater efficiency and flexibility as well as lower energy consumption. This paper presents a new ultrasonic flow reactor developed in our laboratory, a pilot system well suited for reaction scale up. This was applied to the transesterification of soybean oil with methanol for biodiesel production. This reaction is mass-transfer-limited initially because the two reactants are immiscible with each other, then because the glycerol phase separates together with most of the catalyst (Na or K methoxide). In our reactor a mixture of oil (1.6 L), methanol and sodium methoxide 30% in methanol (wt/wt ratio 80:19.5:0.5, respectively) was fully transesterified at about 45 degrees C in 1h (21.5 kHz, 600 W, flow rate 55 mL/min). The same result could be achieved together with a considerable reduction in energy consumption, by a two-step procedure: first a conventional heating under mechanical stirring (30 min at 45 degrees C), followed by ultrasound irradiation at the same temperature (35 min, 600 W, flow rate 55 mL/min). Our studies confirmed that high-throughput ultrasound applications definitively require flow reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.