The present study aimed to evaluate the effects of two types of 9-month adapted physical activity (APA) program, based on a muscle reinforcement training and a postural training, respectively, on muscle mass, muscle strength, and static balance in moderate sarcopenic older women. The diagnosis of sarcopenia was done in accordance with measurable variables and cut-off points suggested by the European Working Group on Sarcopenia in Older People (EWGSOP). Seventy-two participants were randomly assigned to two groups: the muscle reinforcement training group (RESISTANCE) (n=35; 69.9 ± 2.7 years) and the postural training group (POSTURAL) (n=37; 70.0±2.8 years). Body composition, muscle mass, skeletal muscle mass index (SMI), and handgrip strength (HGS) were evaluated for sarcopenia assessment, whereas Sway Path, Sway Area, Stay Time, and Spatial Distance were evaluated for static balance assessment. Sixty-six participants completed the study (RESISTANCE group: n=33; POSTURAL group: n=33). Significant increases of muscle mass, SMI, and handgrip strength values were found in the RESISTANCE group, after muscle reinforcement program. No significant differences appeared in the POSTURAL group, after postural training. Furthermore, RESISTANCE group showed significant improvements in static balance parameters, whereas no significant differences appeared in the POSTURAL group. On the whole, the results of this study suggest that the APA program based on muscle reinforcement applied on moderate sarcopenic older women was able to significantly improve muscle mass and muscle strength, and it was also more effective than the applied postural protocol in determining positive effects on static balance.
Gait disturbances are frequent in Parkinson's disease (PD) and are associated with increased energy expenditure during walking. This study evaluated whether the effects of treadmill training are associated with an improvement of walking economy. Ten patients with idiopathic PD underwent treadmill training (30 min, three times a week for 4 weeks). Walking performance (Tauimed Up and Go, 6-min and 10-m walking tests) and metabolic function (oxygen uptake, heart and respiratory rate) were evaluated before training, at the end of treatment and after 30 days with two different graded exercises (treadmill and cycloergometer). Training significantly improved walking performance. Oxygen uptake, and heart and respiratory rates were significantly decreased only during graded exercise on the treadmill, but not on the cycloergometer. Treadmill training reduces energy expenditure during walking in PD, but the improvements of metabolic walking economy are associated with the specifically trained motor activity.
Given the wide variety of conditioning program trainings employed, the present study compared the catabolic effects induced by CrossFit® and resistance training in moderately trained subjects. Twenty males joined either the CrossFit® group (n = 10; 30 min/day of “workout of the day”) or the resistance training (RT) group (n = 10; 30 min/day of resistance exercises) thrice a week, for 8 weeks. Salivary levels of cortisol, interleukin 1-beta (IL-1β), and uric acid were assessed via enzyme-linked immunosorbent assays before (PRE) and 30-min after (POST) SESSION 1 and SESSION 24. Variables’ percentual changes were computed as (POST-PRE)/PRE*100 in each session (Δ%). CrossFit® acutely increased cortisol levels in both sessions, with a significant decrease in Δ%cortisol from SESSION 1 to 24. In the RT group, cortisol values decreased in both sessions, only acutely. A significant decrease in IL-1β levels was registered acutely in both groups, in both sessions, whereas Δ%IL-1β was not different between the two groups. While uric acid levels increased in both groups acutely, a chronic downregulation of Δ%uric acid, from SESSION 1 to 24, was appreciated for the RT group only. Overall, CrossFit® appeared to induce more intense effects than the RT program as to the investigated catabolic responses.
The evolution with ageing of insulin resistance, body weight (BW) and mean arterial pressure (MAP) was studied in a group of Zucker fatty rats (ZFRs, n = 22), between 7 and 16 weeks of age, compared with an age-matched control group of Zucker lean rats (ZLRs, n = 22). The minimal model of glucose kinetics was applied to estimate glucose effectiveness, S G , and insulin sensitivity, S I , from insulinaemia and glycaemia measured during a 70 min intravenous glucose tolerance test. No correlation was found between S G and age in both ZFR and ZLR groups. No significant changes in mean S G between the two groups indicated no alteration of glucose-mediated glucose disposal. Estimates of S I from individual ZFRs were independent of age and, on average, showed 83% reduction (P < 0.001) compared with the ZLR group. Despite the lack of alteration of S I with age, the ZFR group showed an age-related increase of MAP, which correlated with increasing BW (r = 0.71 and P < 0.001). These results support the hypothesis that in our ZFRs, as a suitable genetic model of obesity and hypertension, insulin resistance is fully established at the age of 7 weeks and remains practically unaltered until at least the sixteenth week. An age-related increase in arterial pressure, observed in this strain, relates more properly to increasing BW, rather than insulin resistance. Development of hypertension with increasing age and BW may result from an enhanced insulin-mediated activity of the sympathetic nervous system, as observed in our previously reported study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.