SummaryChronic exposure to intraperitoneal asbestos triggered a marked response in the mesothelium well before tumor development. Macrophages, mesothelial precursor cells, cytokines and growth factors accumulated in the peritoneal lavage. Transcriptome profiling revealed YAP/TAZ activation in inflamed mesothelium with further activation in tumors, paralleled by increased levels of cells with nuclear YAP/TAZ. Arg1 was one of the highest upregulated genes in inflamed tissue and tumor. Inflamed tissue showed increased levels of single nucleotide variations, with an RNA-editing signature, which were even higher in the tumor samples. Subcutaneous injection of asbestos-treated, but tumor-free mice with syngeneic mesothelioma tumor cells resulted in a significantly higher incidence of tumor growth when compared to naïve mice supporting the role of the environment in tumor progression.
Combination of immune checkpoint inhibitors with chemotherapy is under investigation for cancer treatment. We studied the rationale of such a combination for treating mesothelioma, a disease with limited treatment options. The combination of gemcitabine and immune checkpoint inhibitors outperformed immunotherapy alone with regard to tumor control and survival in a preclinical mesothelioma model; however, the addition of dexamethasone to gemcitabine and immune checkpoint inhibitors nullified the synergistic clinical response. Furthermore, treatment with gemcitabine plus anti-PD-1 resulted in an objective clinical response in two patients with mesothelioma, who were resistant to gemcitabine or anti-PD-1 as monotherapy. Thus, treatment of mesothelioma with a combination of gemcitabine with immune checkpoint inhibitors is feasible and results in synergistic clinical response compared with single treatment in the absence of steroids.
An autocrine-driven upregulation of the Hedgehog (Hh) signaling pathway has been described in malignant pleural mesothelioma (MPM), in which the ligand, desert Hh (DHH), was produced from tumor cells. However, our investigation revealed that the Hh pathway is activated in both tumor and stroma of MPM tumor specimens and an orthotopic immunocompetent rat MPM model. This was demonstrated by positive immunohistochemical staining of Glioma-associated oncogene 1 (GLI1) and Patched1 (PTCH1) in both tumor and stromal fractions. DHH was predominantly expressed in the tumor fractions. To further investigate the role of the Hh pathway in MPM stroma, we antagonized Hh signaling in the rat model of MPM using a Hh antagonist, vismodegib, (100 mg/kg orally). Daily treatment with vismodegib efficiently downregulated Hh target genes Gli1, Hedgehog Interacting Protein (Hhip), and Ptch1, and caused a significant reduction of tumor volume and tumor growth delay. Immunohistochemical analyses revealed that vismodegib treatment primarily downregulated GLI1 and HHIP in the stromal compartment along with a reduced expression of previously described fibroblast Hh-responsive genes such as Fibronectin (Fn1) and Vegfa. Primary cells isolated from the rat model cultured in 3% O 2 continued to express Dhh but did not respond to vismodegib in vitro. However, culture supernatant from these cells stimulated Gli1, Ptch1, and Fn1 expression in mouse embryonic fibroblasts, which was suppressed by vismodegib. Our study provides new evidence regarding the role of Hh signaling in MPM stroma in the maintenance of tumor growth, emphasizing Hh signaling as a treatment target for MPM. Mol Cancer Ther; 15(5); 1095-105. Ó2016 AACR.
BackgroundReproducibility of hits from independent CRISPR or siRNA screens is poor. This is partly due to data normalization primarily addressing technical variability within independent screens, and not the technical differences between them.ResultsWe present “rscreenorm”, a method that standardizes the functional data ranges between screens using assay controls, and subsequently performs a piecewise-linear normalization to make data distributions across all screens comparable. In simulation studies, rscreenorm reduces false positives. Using two multiple-cell lines siRNA screens, rscreenorm increased reproducibility between 27 and 62% for hits, and up to 5-fold for non-hits. Using publicly available CRISPR-Cas screen data, application of commonly used median centering yields merely 34% of overlapping hits, in contrast with rscreenorm yielding 84% of overlapping hits. Furthermore, rscreenorm yielded at most 8% discordant results, whilst median-centering yielded as much as 55%.ConclusionsRscreenorm yields more consistent results and keeps false positive rates under control, improving reproducibility of genetic screens data analysis from multiple cell lines.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2306-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.