Surface hydrophobicity and grease resistance of paper may be achieved by the application of coatings usually derived from fossil-oil resources. However, poor recyclability and environmental concerns on generated waste has increased interest in the study of alternative paper coatings. This work focuses on the study of the performances offered by two different biopolymers, poly(3-hydroxybutyrate-co-3hydroxyvalerate) (PHBV) and polycaprolactone (PCL), also assessing the effect of a plasticizer (PEG) when used as paper coatings. The coated samples were characterized for the structural (by scanning electron microscopy, SEM), diffusive (water vapor and grease barrier properties), and surface properties (affinity for water and oil, by contact angle measurements). Samples of polyethylene-coated and fluorinated paper were used as commercial reference. WVTR of coated samples generally decreased and PHBV and PCL coatings with PEG at 20% showed interesting low wettability, as inferred from the water contact angles. Samples coated with PCL also showed increased grease resistance in comparison with plain paper. This work, within the limits of its lab-scale, offers interesting insights for future research lines toward the development of cellulose-based food contact materials that are fully recyclable and compostable.
Acrylamide in biscuits represents a major concern. This research work was aimed at modifying the current formulation of biscuits to reduce the acrylamide content while maintaining the chemical, physical, and sensory characteristics of the original product. A strategy based on the FoodDrinkEurope Acrylamide Toolbox was adopted. The content of the leavening agent ammonium bicarbonate, the baking temperature program, and the time duration of steam released during the baking process were the three factors evaluated through a factorial design of experiment. The partial replacement of ammonium bicarbonate (from 9.0 g to 1.5 g per 500 g of flour) with sodium bicarbonate (from 4.5 g to 12.48 g), lowering of the temperature in the central phase of the baking process (from 170 °C to 150 °C), and the release of steam for 3 min resulted in an 87.2% reduction in acrylamide concentration compared to biscuits of reference. CIELab color indices and aw were the parameters that showed the most significant correlation with acrylamide concentration in biscuits and could, therefore, become markers to predict the acrylamide content along production lines for an instant evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.