The International Registry of Werner syndrome (www.wernersyndrome.org) has been providing molecular diagnosis of the Werner syndrome (WS) for the past decade. The present communication summarizes, from among 99 WS subjects, the spectrum of 50 distinct mutations discovered by our group and by others since the WRN gene (also called RECQL2 or REQ3) was first cloned in 1996; 25 of these have not previously been published. All WRN mutations reported thus far have resulted in the elimination of the nuclear localization signal at the C-terminus of the protein, precluding functional interactions in the nucleus; thus, all could be classified as null mutations. We now report two new mutations in the N-terminus that result in instability of the WRN protein. Clinical data confirm that the most penetrant phenotype is bilateral ocular cataracts. Other cardinal signs were seen in more than 95% of the cases. The median age of death, previously reported to be in the range of 46-48 years, is 54 years. Lymphoblastoid cell lines (LCLs) have been cryopreserved from the majority of our index cases, including material from nuclear pedigrees. These, as well as inducible and complemented hTERT (catalytic subunit of human telomerase) immortalized skin fibroblast cell lines are available to qualified investigators.
The three‐dimensional architecture of the right ventricular myocardium is a major determinant of function, but as yet no investigator‐independent methods have been used to characterize either the normal or hypertrophied state. We aimed to assess and compare, using diffusion tensor magnetic resonance imaging, the normal architecture with the arrangement induced by chronic hypertrophy. We randomized 20 female 5 kg piglets into pulmonary trunk banding (N = 16) and sham operation (N = 4). Right ventricular hypertrophy was assessed after 8 weeks. The excised and fixed hearts were subject to diffusion tensor imaging to determine myocyte helical angles, and the presence of any reproducible tracks formed by the aggregated myocytes. All banding animals developed significant right ventricular hypertrophy, albeit that no difference was observed in terms of helical angles or myocardial pathways between the banded animals and sham group animals. Helical angles varied from ∼70 degrees endocardially to −50 degrees epicardially. Very few tracks were circular, with helical angles approximating zero. Reproducible patterns of chains of aggregated myocytes were observed in all hearts, regardless of group. The architecture of the myocytes aggregated in the walls of the right ventricle is comparable to that found in the left ventricle in terms of endocardial and epicardial helical angles, however the right ventricle both in the normal and the hypertrophied state lacks the extensive zone of circular myocytes seen in the mid‐portion of the left ventricular walls. Without such beneficial architectural remodelling, the porcine right ventricle seems unsuited structurally to sustain a permanent increase in afterload. Anat Rec, 2009. © 2009 Wiley‐Liss, Inc.
Sotos syndrome is characterized by pre- and post-natal overgrowth, typical craniofacial features, advanced bone age, and developmental delay. Some degree of phenotypic overlap exists with other overgrowth syndromes, in particular with Weaver syndrome. Sotos syndrome is caused by haploinsufficiency of the NSD1 (nuclear receptor SET domain containing gene 1) gene. Microdeletions involving the gene are the major cause of the syndrome in Japanese patients, whereas intragenic mutations are more frequent in non-Japanese patients. NSD1 aberrations have also been described in some patients diagnosed as Weaver syndrome. Some authors have suggested a certain degree of genotype-phenotype correlation, with a milder degree of overgrowth, a more severe mental retardation, and a higher frequency of congenital anomalies in microdeleted patients. Data on larger series are needed to confirm this suggestion. We report here on microdeletion and mutation analysis of NSD1 in 59 patients with congenital overgrowth. Fourteen novel mutations, two previously described and one microdeletion were identified. All patients with a NSD1 mutation had been clinically classified as "classical Sotos," although their phenotype analysis demonstrated that some major criteria, such as overgrowth and macrocephaly, could be absent. All patients with confirmed mutations shared the typical Sotos facial gestalt. A high frequency of congenital heart defects was present in patients with intragenic mutations, supporting the relevance of the NSD1 gene in the pathogenesis of this particular defect.
Familial adenomatous polyposis has been the first form of inherited intestinal polyposis to be recognized. For a long time it has been considered the main polyposis syndrome, associated with an easily recognizable phenotype, with a marginal role attributed to a few very rare hamartomatous conditions. More recently, it has been gradually demonstrated that the intestinal polyposes encompass a range of conditions within a wide spectrum of disease severity, polyp histology, and extraintestinal manifestations. A growing number of genes and phenotypes has been identified, and heterogeneity of somatic molecular pathways underlying epithelial transformation in different syndromes and associated tumors has been documented. Increasing knowledge on the molecular bases and more widespread use of genetic tests has shown phenotypic overlaps between conditions that were previously considered distinct, highlighting diagnostic difficulties. With the advent of next generation sequencing, the diagnosis and the classification of these syndromes will be progressively based more on genetic testing results. However, the phenotypic variability documented among patients with mutations in the same genes cannot be fully explained by different expressivity, indicating a role for as yet unknown modifying factors. Until the latter will be identified, the management of patients with polyposis syndromes should be guided by both clinical and genetic findings. © 2013 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.