The role of epigenetics in endothelial cell senescence is a cutting-edge topic in ageing research. However, little is known of the relative contribution to pro-senescence signal propagation provided by microRNAs shuttled by extracellular vesicles (EVs) released from senescent cells. Analysis of microRNA and DNA methylation profiles in non-senescent (control) and senescent (SEN) human umbilical vein endothelial cells (HUVECs), and microRNA profiling of their cognate small EVs (sEVs) and large EVs demonstrated that SEN cells released a significantly greater sEV number than control cells. sEVs were enriched in miR-21-5p and miR-217, which target DNMT1 and SIRT1. Treatment of control cells with SEN sEVs induced a miR-21/miR-217-related impairment of DNMT1-SIRT1 expression, the reduction of proliferation markers, the acquisition of a senescent phenotype and a partial demethylation of the locus encoding for miR-21. MicroRNA profiling of sEVs from plasma of healthy subjects aged 40-100 years showed an inverse U-shaped age-related trend for miR-21-5p, consistent with senescence-associated biomarker profiles. Our findings suggest that miR-21-5p/miR-217 carried by SEN sEVs spread pro-senescence signals, affecting DNA methylation and cell replication.
Innovative biomarkers are required to manage type 2 diabetic patients (T2DM). We focused our study on miR-126-3p and miR-21-5p levels, as biomarkers of endothelial function and inflammation. MiRNAs levels were measured in plasma from 107 healthy subjects (CTR) and 193 diabetic patients (T2DM), 76 without (T2DM NC) and 117 with (T2DM C) complications.When diabetic complication were analysed as a whole, miR-126-3p and miR-21-5p levels declined significantly from CTR to T2DM NC and T2DM C patients. When miRNAs levels were related to specific complications, significantly higher miR-21-5p levels (0.46 ± 0.44 vs. 0.26±0.33, p < 0.001) and significant lower miR-126-3p levels (0.21±0.21 vs. 0.28±0.22, p = 0.032) were found in T2DM with previous major cardiovascular events (MACE) vs. all the others T2DM patients.To confirm these results we focused on circulating angiogenic cells (CACs) from a subgroup of 10 CTR, 15 T2DM NC and 15 T2DM patients with MACE. CACs from T2DM patients expressed higher miR-21-5p and lower miR-126-3p levels than CACs from CTR. Furthermore, CACs from T2DM + MACE showed the highest levels of miR-21-5p.Circulating miR-21-5p and miR-126-3p emerge as dynamic biomarkers of systemic inflammatory/angiogenic status. Their expression levels in CACs from T2DM with MACE suggest a shift from a proangiogenic to a proinflammatory profile.
In bone marrow (BM), hematopoietic elements are mingled with adipocytes (BM-A), which are the most abundant stromal component in the niche. BM-A progressively increase with aging, eventually occupying up to 50% of BM cavities. In this work, the role played by BM-A was explored by studying primary human BM-A isolated from hip surgery patients at the molecular level, through microarray analysis, and at the functional level, by assessing their relationship with primary human hematopoietic stem cells (HSC) by the long-term culture initiating cell (LTC-IC) assay. Findings demonstrated that BM-A are capable of supporting HSC survival in the LTC-IC assay, since after 5 weeks of co-culture, HSC were still able to proliferate and differentiate. Furthermore, critical molecules such as C-X-C motif chemokine 12 (CXCL12), interleukin (IL)-8, colony-stimulating factor 3 (CSF3), and leukaemia inhibitory factor (LIF), were expressed at similar levels in BM-A and in primary human BM mesenchymal stromal cells (BM-MSC), whereas IL-3 was higher in BM-A. Interestingly, BM-A displayed a different gene expression profile compared with subcutaneous adipose tissue adipocytes (AT-A) collected from abdominal surgery patients, especially in terms of regulation of lipid metabolism, stemness genes, and white-to-brown differentiation pathways. Accordingly, analysis of the gene pathways involved in hematopoiesis regulation showed that BM-A are more closely related to BM-MSC than to AT-A. The present data suggest that BM-A play a supporting role in the hematopoietic niche and directly sustain HSC survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.