A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems.
A novel high-gain dielectric resonator antenna (DRA) for wideband wireless applications is presented. The antenna is composed of a hollow cylindrical dielectric resonator (DR) inside which an assembly of two dielectric truncated cones having different permittivities are inserted. A suitable probe excitation system and an air gap, realized between the base of the first truncated dielectric cone and the ground plane, are used to further increase the antenna bandwidth. A full-wave commercial software based on the finite integration technique (FIT) has been used to analyze and design the antenna, while the singularity-extraction method (SEM) has been adopted to extract information about the main resonant processes taking place in the proposed radiating structure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.