Over the last 2 decades, several coronaviruses (CoVs) have crossed the species barrier into humans, causing highly prevalent and severe respiratory diseases, often with fatal outcomes. CoVs are a large group of enveloped, single-stranded, positive-sense RNA viruses, which encode large replicase polyproteins that are processed by viral peptidases to generate the nonstructural proteins (Nsps) that mediate viral RNA synthesis. Papain-like peptidases (PLPs) and chymotrypsin-like cysteine 3C-like peptidase are essential for coronaviral replication and represent attractive antiviral drug targets. Furthermore, CoVs utilize the activation of their envelope spike glycoproteins by host cell peptidases to gain entry into cells. CoVs have evolved multiple strategies for spike protein activation, including the utilization of lysosomal cysteine cathepsins. In this review, viral and host peptidases involved in CoV cell entry and replication are discussed in depth, with an emphasis on papain-like cysteine cathepsins. Furthermore, important findings on cysteine peptidase inhibitors with regard to virus attenuation are highlighted as well as the potential of such inhibitors for future treatment strategies for CoV-related diseases.
Introduction and methodsIn this study we report that sequential treatment of supercharged NK (sNK) cells with either chemotherapeutic drugs or check-point inhibitors eliminate both poorly differentiated and well differentiated tumors in-vivo in humanized-BLT mice.Background and resultssNK cells were found to be a unique population of activated NK cells with genetic, proteomic, and functional attributes that are very different from primary untreated or IL-2 treated NK cells. Furthermore, NK-supernatant differentiated or well-differentiated oral or pancreatic tumor cell lines are not susceptible to IL-2 activated primary NK cell-mediated cytotoxicity; however, they are greatly killed by the CDDP and paclitaxel in in-vitro assays. Injection of one dose of sNK cells at 1 million cells per mouse to aggressive CSC-like/poorly differentiated oral tumor bearing mice, followed by an injection of CDDP, inhibited tumor weight and growth, and increased IFN-γ secretion as well as NK cell-mediated cytotoxicity substantially in bone marrow, spleen and peripheral blood derived immune cells. Similarly, the use of check point inhibitor anti-PD-1 antibody increased IFN-γ secretion and NK cell-mediated cytotoxicity, and decreased the tumor burden in-vivo, and tumor growth of resected minimal residual tumors from hu-BLT mice when used sequentially with sNK cells. The addition of anti-PDL1 antibody to poorly differentiated MP2, NK-differentiated MP2 or well-differentiated PL-12 pancreatic tumors had different effects on tumor cells depending on the differentiation status of the tumor cells, since differentiated tumors expressed PD-L1 and were susceptible to NK cell mediated ADCC, whereas poorly differentiated OSCSCs or MP2 did not express PD-L1 and were killed directly by the NK cells.ConclusionsTherefore, the ability to target combinatorially clones of tumors with NK cells and chemotherapeutic drugs or NK cells with checkpoint inhibitors at different stages of tumor differentiation may be crucial for successful eradication and cure of cancer. Furthermore, the success of check point inhibitor PD-L1 may relate to the levels of expression on tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.