We investigate a large geodetic data set of interferometric synthetic aperture radar (InSAR) and GPS measurements to determine the source parameters for the three main shocks of the 2016 Central Italy earthquake sequence on 24 August and 26 and 30 October (Mw 6.1, 5.9, and 6.5, respectively). Our preferred model is consistent with the activation of four main coseismic asperities belonging to the SW dipping normal fault system associated with the Mount Gorzano‐Mount Vettore‐Mount Bove alignment. Additional slip, equivalent to a Mw ~ 6.1–6.2 earthquake, on a secondary (1) NE dipping antithetic fault and/or (2) on a WNW dipping low‐angle fault in the hanging wall of the main system is required to better reproduce the complex deformation pattern associated with the greatest seismic event (the Mw 6.5 earthquake). The recognition of ancillary faults involved in the sequence suggests a complex interaction in the activated crustal volume between the main normal faults and the secondary structures and a partitioning of strain release.
We investigate the 24–27 December 2018 eruption of Mount Etna occurred from fissures located on the volcano eastern flank and accompanied by a seismic swarm, which was triggered by the magma intrusion and continued for weeks after the end of the eruption. Moreover, this swarm involved some of the shallow volcano‐tectonic structures located on the Mount Etna flanks and culminated on 26 December with the strongest event (ML 4.8), occurred along the Fiandaca Fault. In this work, we analyze seismological data and Sentinel‐1 Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements, the latter inverted through analytical modeling. Our results suggest that a dike source intruded, promoting the opening of the eruptive fissures fed by a shallower dike. Moreover, our findings indicate that the activation of faults in different sectors of the volcano may be considered as a response to accommodate the deformations induced by the magma volumes injection.
We investigate the 19 September 2021 eruption of the Cumbre Vieja volcano (La Palma, Canary Islands, Spain). In particular, we analyze the Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements obtained by processing Sentinel‐1 images acquired from both ascending and descending orbits. First, we show the importance, for oceanic islands like La Palma, of investigating DInSAR products retrieved from time series, instead of single interferograms, to effectively remove possible atmospheric artifacts within the displacement measurements. Subsequently, we invert the retrieved data through analytical modeling. Our results highlight that a sill–like source was active in the pre–eruptive phase (8–16 September), whereas the action of two dikes prevailed during the co‐eruptive phase (17–22 September). This evolution suggests a process of magma rising through a network of interconnected sills and dikes. The seismicity, that preceded and accompanied the onset of the eruption, is consistent with our findings.
We analyse the Mw 6.5, 2016 Amatrice-Norcia (Central Italy) seismic sequence by means of InSAR, GPS, seismological and geologic data. The >1000 km2 area affected by deformation is involving a volume of about 6000 km3 and the relocated seismicity is widely distributed in the hangingwall of the master fault system and the conjugate antithetic faults. Noteworthy, the coseismically subsided hangingwall volume is about 0.12 km3, whereas the uplifted adjacent volumes uplifted only 0.016 km3. Therefore, the subsided volume was about 7.5 times larger than the uplifted one. The coseismic motion requires equivalent volume at depth absorbing the hangingwall downward movement. This unbalance regularly occurs in normal fault-related earthquakes and can be inferred as a significant contribution to coseismic strain accomodated by a stress-drop driven collapse of precursory dilatancy. The vertical coseismic displacement is in fact larger than the horizontal component, consistent with the vertical orientation of the maximum lithostatic stress tensor.
We investigate the Mw 6.5 Norcia (Central Italy) earthquake by exploiting seismological data, DInSAR measurements, and a numerical modelling approach. In particular, we first retrieve the vertical component (uplift and subsidence) of the displacements affecting the hangingwall and the footwall blocks of the seismogenic faults identified, at depth, through the hypocenters distribution analysis. To do this, we combine the DInSAR measurements obtained from coseismic SAR data pairs collected by the ALOS-2 sensor from ascending and descending orbits. The achieved vertical deformation map displays three main deformation patterns: (i) a major subsidence that reaches the maximum value of about 98 cm near the epicentral zones nearby the town of Norcia; (ii) two smaller uplift lobes that affect both the hangingwall (reaching maximum values of about 14 cm) and the footwall blocks (reaching maximum values of about 10 cm). Starting from this evidence, we compute the rock volumes affected by uplift and subsidence phenomena, highlighting that those involved by the retrieved subsidence are characterized by significantly higher deformation values than those affected by uplift (about 14 times). In order to provide a possible interpretation of this volumetric asymmetry, we extend our analysis by applying a 2D numerical modelling approach based on the finite element method, implemented in a structural-mechanic framework, and exploiting the available geological and seismological data, and the ground deformation measurements retrieved from the multi-orbit ALOS-2 DInSAR analysis. In this case, we consider two different scenarios: the first one based on a single SW-dipping fault, the latter on a main SW-dipping fault and an antithetic zone. In this context, the model characterized by the occurrence of an antithetic zone presents the retrieved best fit coseismic surface deformation pattern. This result allows us to interpret the subsidence and uplift phenomena caused by the Mw 6.5 Norcia earthquake as the result of the gravitational sliding of the hangingwall along the main fault plane and the frictional force acting in the opposite direction, consistently with the double couple fault plane mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.