In a growing context of green and circular economy, gaining knowledge of the composition of every crop is crucial, as this will allow for their full exploitation. Cherry (Prunus avium L.) is a widespread tree of particular interest for its fruits and its valuable timber. Its wood is rich in extractives and its characterization will allow to consider other applications for this feedstock. In this study, chipped cherry wood was extracted and chemically analysed to determine its total phenolic content, total condensed tannin, antioxidant capacity, and polysaccharide content through wet chemistry analysis. These investigations were coupled with 13C-NMR and FTIR spectrometry, with HPLC as well as elemental analysis to conduct a comprehensive chemical characterization. Thermogravimetric measurements were also taken to understand the behaviour of the extract when exposed to high temperature. The registered findings were benchmarked against commercial mimosa (Acacia mearnsii De Wild.) and chestnut (Castanea sativa Mill.) tannins which were selected as template for condensed and hydrolysable tannins, respectively. Cherry extract was found to be the poorest in phenolics which are mainly constituted of pyrogallic flavonoids strongly interconnected with significant amounts of polysaccharides.
One of the major challenges currently in the field of material science is finding natural alternatives to the high-performing plastics developed in the last century. Consumers trust synthetic products for their excellent properties, but they are becoming aware of their impact on the planet. One of the most attractive precursors for natural polymers is tannin extracts and in particular condensed tannins. Quebracho (Schinopsis balansae) extract is one of the few industrially available flavonoids and can be exploited as a building block for thermoset resins due to its phenol-like reactivity. The aim of this study was to systematically investigate different hardeners and evaluate the water resistance, thermal behavior, and chemical structure of the quebracho tannin-based polymers in order to understand their suitability as adhesives. It was observed that around 80% of the extract is resistant to leaching when 5% of formaldehyde or hexamine or 10% of glyoxal or furfural are added. Additionally, furfuryl alcohol guarantees high leaching resistance, but only at higher proportions (20%). The quebracho-based formulations showed specific thermal behavior during hardening and higher degradation resistance than the extract. Finally, these polymers undergo similar chemistry to those of mimosa, with exclusive reactivity of the A-ring of the flavonoid.
Wood-based products are traditionally bonded with synthetic adhesives. Resources availability and ecological concerns have drawn attention to bio-based sources. The use of tannin-based adhesives for engineered wood products has been known for decades, however, these formulations were hardly used for the gluing of solid wood because their rigidity involved low performance. In this work, a completely bio-based formulation consisting of Quebracho (Schinopsis balancae) extract and furfural is characterized in terms of viscosity, gel time, and FT-IR spectroscopy. Further, the usability as an adhesive for beech (Fagus sylvatica) plywood with regard to press parameters (time and temperature) and its influence on physical (density and thickness) and mechanical properties (modulus of elasticity, modulus of rupture and tensile shear strength) were determined. These polyphenolic adhesives presented non-Newtonian behavior but still good spreading at room temperature as well as evident signs of crosslinking when exposed to 100 °C. Within the press temperature, a range of 125 °C to 140 °C gained suitable results with regard to mechanical properties. The modulus of elasticity of five layered 10 mm beech plywood ranged between 9600 N/mm2 and 11,600 N/mm2, respectively, with 66 N/mm2 to 100 N/mm2 for the modulus of rupture. The dry state tensile shear strength of ~2.2 N/mm2 matched with other tannin-based formulations, but showed delamination after 24 h of water storage. The proposed quebracho tannin-furfural formulation can be a bio-based alternative adhesive for industrial applicability for special plywood products in a dry environment, and it offers new possibilities in terms of recyclability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.