In recent years a CRA (Credit Risk Analysis) quantum algorithm with a quadratic speedup over classical analogous methods has been introduced [1]. We propose a new variant of this quantum algorithm with the intent of overcoming some of the most significant limitations (according to business domain experts) of this approach. In particular, we describe a method to implement a more realistic and complex risk model for the default probability of each portfolio’s asset, capable of taking into account multiple systemic risk factors. In addition, we present a solution to increase the flexibility of one of the model’s inputs, the Loss Given Default, removing the constraint to use integer values. This specific improvement addresses the need to use real data coming from the financial sector in order to establish fair benchmarking protocols.
Although these enhancements come at a cost in terms of circuit depth and width, they nevertheless show a path towards a more realistic software solution. Recent progress in quantum technology shows that eventually, the increase in the number and reliability of qubits will allow for useful results and meaningful scales for the financial sector, also on real quantum hardware, paving the way for a concrete quantum advantage in the field.
The paper also describes experiments conducted on simulators to test the circuit proposed and contains an assessment of the scalability of the approach presented.
Credit risk analysis (CRA) quantum algorithms aim at providing a quadratic speedup over classical analogous methods. Despite this, experts in the business domain have identified significant limitations in the existing approaches. Thus, we proposed a new variant of the CRA quantum algorithm to address these limitations. In particular, we improved the risk model for each asset in a portfolio by enabling it to consider multiple systemic risk factors, resulting in a more realistic and complex model for each asset’s default probability. Additionally, we increased the flexibility of the loss-given-default input by removing the constraint of using only integer values, enabling the use of real data from the financial sector to establish fair benchmarking protocols. Furthermore, all proposed enhancements were tested both through classical simulation of quantum hardware and, for this new version of our work, also using QPUs from IBM Quantum Experience in order to provide a baseline for future research. Our proposed variant of the CRA quantum algorithm addresses the significant limitations of the current approach and highlights an increased cost in terms of circuit depth and width. In addition, it provides a path to a substantially more realistic software solution. Indeed, as quantum technology progresses, the proposed improvements will enable meaningful scales and useful results for the financial sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.