Decision makers use models to understand and analyze a situation, to compare alternatives and to find solutions. Additionally, there are systems that support decision makers through data analysis, calculation or simulation. Typically, modeling languages for humans and machine are different from each other. While humans prefer graphical or textual models, machine-interpretable models have to be represented in a formal language. This chapter describes an approach to modeling that is both cognitively adequate for humans and processable by machines. In addition, the approach supports the creation and adaptation of domain-specific modeling languages. A metamodel which is represented as a formal ontology determines the semantics of the modeling language. To create a graphical modeling language, a graphical notation can be added for each class of the ontology. Every time a new modeling element is created during modeling, an instance for the corresponding class is created in the ontology. Thus, models for humans and machines are based on the same internal representation.
In this paper we present a hybrid modeling approach which supports the continuous alignment of business and IT in the cloud. Business Process as a Service provides the end-to-end cloud support for business processes instead of single applications. A graphical modelling environment allows nontechnical modelers to design business processes and to specify requirements in human-interpretable way. Via semantic lifting, the graphical models can be annotated with classes and values from an enterprise ontology. The BPaaS Ontology contains the relevant classes for the smart Business and IT-Cloud alignment. It supports the modeler in using a standard terminology and thus ensures consistent modeling.
The advent of digitalization exposes enterprises to an ongoing transformation with the challenge to quickly capture relevant aspects of changes. This brings the demand to create or adapt domain-specific modeling languages (DSMLs) efficiently and in a timely manner, which, on the contrary, is a complex and timeconsuming engineering task. This is not just due to the required high expertise in both knowledge engineering and targeted domain. It is also due to the sequential approach that still characterizes the accommodation of new requirements in modeling language engineering. In this paper we present a DSML adaptation approach where agility is fostered by merging engineering phases in a single modeling environment. This is supported by ontology concepts, which are tightly coupled with DSML constructs. Hence, a modeling environment is being developed that enables a modeling language to be adapted on-the-fly. An initial set of operators is presented for the rapid and efficient adaptation of both syntax and semantics of modeling languages. The approach allows modeling languages to be quickly released for usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.