The widespread use of electric vehicles is nowadays limited by the “range anxiety” of the customers. The drivers’ main concerns are related to the kilometric range of the vehicle and to the charging time. An optimized fast-charge profile can help to decrease the charging time, without degrading the cell performance and reducing the cycle life. One of the main reasons for battery capacity fade is linked to the Lithium plating phenomenon. This work investigates two methodologies, i.e., three-electrode cell measurement and internal resistance evolution during charging, for detecting the Lithium plating conditions. From this preliminary analysis, it was possible to develop new Multi-Stage Constant-Current profiles, designed to improve the performance in terms of charging time and cells capacity retention with respect to a reference profile. Four new profiles were tested and compared to a reference. The results coming from the new profiles demonstrate a simultaneous improvement in terms of charging time and cycling life, showing the reliability of the implemented methodology in preventing Lithium plating.
Since lithium-ion batteries seem to be the most eligible technology to store energy for e-mobility applications, it is fundamental to focus attention on kilometric ranges and charging times. The optimization of the charging step can provide the appropriate tradeoff between time saving and preserving cell performance over the life cycle. The implementation of new multistage constant current profiles and related performances after 1000 cycles are presented and compared with respect to a reference profile. A physicochemical (SEM, XRD, particle size analysis, etc.) and electrochemical (incremental capacity analysis, internal resistance measurements) characterization of the aged cells is shown and their possible implementation on board is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.