Multi-antenna coded caching is known to combine a global caching gain that is proportional to the cumulative cache size found across the network, with an additional spatial multiplexing gain that stems from using multiple transmitting antennas. However, a closer look reveals two severe bottlenecks; the well-known exponential subpacketization bottleneck that dramatically reduces performance when the communicated file sizes are finite, and the considerable optimization complexity of beamforming multicast messages when the SNR is finite. We here present an entirely novel caching scheme, termed cyclic multi-antenna coded caching, whose unique structure allows for the resolution of the above bottlenecks in the crucial regime of many transmit antennas. For this regime, where the multiplexing gain can exceed the coding gain, our new algorithm is the first to achieve the exact one-shot linear optimal DoF with a subpacketization complexity that scales only linearly with the number of users, and the first to benefit from a multicasting structure that allows for exploiting uplink-downlink duality in order to yield optimized beamformers ultra-fast. In the end, our novel solution provides excellent performance for networks with finite SNR, finite file sizes, and many users.
Abstract-Fault injection attacks are a powerful tool to exploit implementative weaknesses of robust cryptographic algorithms. The faults induced during the computation of the cryptographic primitives allow to extract pieces of information about the secret parameters stored into the device using the erroneous results.Various fault induction techniques have been researched, both to make practical several theoretical fault models proposed in open literature and to outline new kinds of vulnerabilities.In this paper we describe a non-invasive fault model based on the effects of underfeeding the power supply of an ARM general purpose CPU. We describe the methodology followed to characterize the fault model on an ARM9 microprocessor and propose and mount attacks on implementations of the RSA primitives.
The work explores the fundamental limits of coded caching in heterogeneous networks where multiple (N0) senders/antennas, serve different users which are associated (linked) to shared caches, where each such cache helps an arbitrary number of users. Under the assumption of uncoded cache placement, the work derives the exact optimal worstcase delay and DoF, for a broad range of user-to-cache association profiles where each such profile describes how many users are helped by each cache. This is achieved by presenting an information-theoretic converse based on index coding that succinctly captures the impact of the user-to-cache association, as well as by presenting a coded caching scheme that optimally adapts to the association profile by exploiting the benefits of encoding across users that share the same cache.The work reveals a powerful interplay between shared caches and multiple senders/antennas, where we can now draw the striking conclusion that, as long as each cache serves at least N0 users, adding a single degree of cache-redundancy can yield a DoF increase equal to N0, while at the same time -irrespective of the profile -going from 1 to N0 antennas reduces the delivery time by a factor of N0. Finally some conclusions are also drawn for the related problem of coded caching with multiple file requests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.