Objective: The aim of this study was to assess the feasibility of recording speech-ABRs from cochlear implant (CI) recipients, and to remove the artefact using a clinically applicable single-channel approach. Design: Speech-ABRs were recorded to a 40 ms [da] presented via loudspeaker using a two-channel electrode montage. Additionally, artefacts were recorded using an artificial-head incorporating a MED-EL CI with stimulation parameters as similar as possible to those of three MED-EL participants. A single-channel artefact removal technique was applied to all responses. Study sample: A total of 12 adult CI recipients (6 Cochlear Nucleus and 6 MED-EL CIs). Results: Responses differed according to the CI type, artefact removal resulted in responses containing speech-ARB characteristics in two MED-EL CI participants; however, it was not possible to verify whether these were true responses or were modulated by artefacts, and artefact removal was successful from the artificial-head recordings. Conclusions: This is the first study that attempted to record speech-ABRs from CI recipients. Results suggest that there is a potential for application of a single-channel approach to artefact removal. However, a more robust and adaptive approach to artefact removal that includes a method to verify true responses is needed.
Opaque face masks harm communication by preventing speech-reading (lip-reading) and attenuating high-frequency sound. Although transparent masks and shields (visors) with clear plastic inserts allow speech-reading, they usually create more sound attenuation than opaque masks. Consequently, an iterative process was undertaken to create a better design, and the instructions to make it are published. The experiments showed that lowering the mass of the plastic inserts decreases the high-frequency sound attenuation. A shield with a clear thermoplastic polyurethane (TPU) panel had an insertion loss of (2.0 ± 1.1) dB for 1.25–8 kHz, which improves on previous designs that had attenuations of 11.9 dB and above. A cloth mask with a TPU insert was designed and had an insertion loss of (4.6 ± 2.3) dB for 2–8 kHz, which is better than the 9–22 dB reported previously in the literature. The speech intelligibility index was also evaluated. Investigations to improve measurement protocols that use either mannikins or human talkers were undertaken. Manufacturing variability and inconsistency of human speaking were greater sources of experimental error than fitting differences. It was shown that measurements from a mannikin could match those from humans if insertion losses from four human talkers were averaged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.