Deep learning (DL) has proved successful in medical imaging and, in the wake of the recent COVID-19 pandemic, some works have started to investigate DLbased solutions for the assisted diagnosis of lung diseases. While existing works focus on CT scans, this paper studies the application of DL techniques for the analysis of lung ultrasonography (LUS) images. Specifically, we present a novel fully-annotated dataset of LUS images collected from several Italian hospitals, with labels indicating the degree of disease severity at a frame-level, videolevel, and pixel-level (segmentation masks). Leveraging these data, we introduce several deep models that address relevant tasks for the automatic analysis of LUS images. In particular, we present a novel deep network, derived from Spatial Transformer Networks, which simultaneously predicts the disease severity score associated to a input frame and provides localization of pathological artefacts in a weakly-supervised way. Furthermore, we introduce a new method based on uninorms for effective frame score aggregation at a video-level. Finally, we benchmark state of the art deep models for estimating pixel-level segmentations of COVID-19 imaging biomarkers. Experiments on the proposed dataset demonstrate satisfactory results on all the considered tasks, paving the way to future research on DL for the assisted diagnosis of COVID-19 from LUS data.
Lung ultrasound (LUS) has become a widely adopted diagnostic method for several lung diseases. However, the presence of air inside the lung does not allow the anatomical investigation of the organ. Therefore, LUS is mainly based on the interpretation of vertical imaging artifacts, called B-lines. These artifacts correlate with several pathologies, but their genesis is still partly unknown. Within this framework, this study focuses on the factors affecting the artifacts' formation by numerically simulating the ultrasound propagation within the lungs through the toolbox k-Wave. Since the main hypothesis behind the generation of B-lines relies on multiple scattering phenomena occurring once acoustic channels open at the lung surface, the impact of changing alveolar size and spacing is of interest. The tested domain is of size 4 cm × 1.6 cm, the investigated frequencies vary from 1 to 5 MHz, and the explored alveolar diameters and spacing range from 100 to 400 μm and from 20 to 395 μm, respectively. Results show the strong and entangled relation among the wavelength, the domain geometries, and the artifact visualization, allowing for better understanding of propagation in such a complex medium and opening several possibilities for future studies.
In this work, we study massive multiple-input multiple-output (MIMO) precoders optimizing power consumption while achieving the users' rate requirements. We first characterize analytically the solutions for narrowband and wideband systems minimizing the power amplifiers (PAs) consumption in low system load, where the per-antenna power constraints are not binding. After, we focus on the asymptotic wideband regime. The power consumed by the whole base station (BS) and the high-load scenario are then also investigated. We obtain simple solutions, and the optimal strategy in the asymptotic case reduces to finding the optimal number of active antennas, relying on known precoders among the active antennas. Numerical results show that large savings in power consumption are achievable in the narrowband system by employing antenna selection, while all antennas need to be activated in the wideband system when considering only the PAs consumption, and this implies lower savings. When considering the overall BS power consumption and a large number of subcarriers, we show that significant savings are achievable in the low-load regime by using a subset of the BS antennas. While optimization based on transmit power pushes to activate all antennas, optimization based on consumed power activates a number of antennas proportional to the load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.