The Noradrenergic Theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the up-regulation of the Locus Coeruleus - Noradrenergic System (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to Reserve. To test this theory, a study was conducted on a sample of 686 participants (395 Controls, 156 Mild Cognitive Impairment, 135 Alzheimer’s Disease) investigating the relationship between LC vol-ume, attentional performance and a biological index of brain maintenance (BrainPAD – a measure which compares an individual’s structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual’s age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored. Control analyses on the Serotoninergic (5-HT), Dopaminergic (DA) and Cholinergic (Ach) systems were contrasted with the Noradrenergic hypothesis. Results showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of Reserve, and they suggest that early prevention strategies focused on upregulation of the noradrenergic system (e.g. attention training, physical exercise and pharmacological intervention) may yield important clin-ical benefits to mitigate cognitive impairment with age and disease.
The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the Locus Coeruleus - Noradrenergic System (LC-NA) originating in the Brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to Reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 Mild Cognitive Impairment, 135 Alzheimer’s Disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD – an objective measure which compares an individual’s structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual’s age). Further analyses were carried out on Reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the Serotoninergic (5-HT), Dopaminergic (DA) and Cholinergic (Ach) systems were contrasted with the Noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems.Results supported by bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of Reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g. cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.
The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the Locus Coeruleus - Noradrenergic System (LC-NA) originating in the Brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to Reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 Mild Cognitive Impairment, 135 Alzheimer’s Disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD – an objective measure which compares an individual’s structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual’s age). Further analyses were carried out on Reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the Serotoninergic (5-HT), Dopaminergic (DA) and Cholinergic (Ach) systems were contrasted with the Noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems.Results supported by bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of Reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g. cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.
Background & aims It is documented that low protein and amino-acid dietary intake is related to poorer cognitive health and increased risk of dementia. Degradation of the neuromodulatory pathways, (comprising the cholinergic, dopaminergic, serotoninergic and noradrenergic systems) is observed in neurodegenerative diseases and impairs the proper biosynthesis of key neuromodulators from micro-nutrients and amino acids. How these micro-nutrients are linked to neuromodulatory pathways in healthy adults is less studied. The Locus Coeruleus–Noradrenergic System (LC-NA) is the earliest subcortical structure affected in Alzheimer’s disease, showing marked neurodegeneration, but is also sensitive for age-related changes. The LC-NA system is critical for supporting attention and cognitive control, functions that are enhanced both by tyrosine administration and chronic tyrosine intake. The purpose of this study was to 1) investigate whether the dietary intake of tyrosine, the key precursor for noradrenaline (NA), is related to LC integrity 2) whether LC integrity mediates the reported association between tyrosine intake and higher cognitive performance (measured with Trail Making Test – TMT), and 3) whether LC integrity relates to an objective measure of brain maintenance (BrainPAD). Methods The analyses included 398 3T MRIs of healthy participants from the Berlin Aging Study II to investigate the relationship between LC integrity and habitual dietary tyrosine intake-daily average (HD-Tyr-IDA). As a control procedure, the same analyses were repeated on other main seeds of the neuromdulatory subcortical system (Dorsal and Medial Raphe, Ventral Tegmental Area and Nucleus Basalis of Meynert). In the same way, the relationships between the five nuclei and BrainPAD were tested. Results Results show that HD-Tyr-IDA is positively associated with LC integrity. Similarly, LC integrity disproportionally relates to better brain maintenance (BrainPAD). Mediation analyses reveal that only LC, relative to the other nuclei tested, mediates the relationship between HD-Tyr-IDA I and performance in the TMT and between HD-Tyr-IDA and BrainPAD. Conclusions These findings provide the first evidence linking tyrosine intake with LC-NA system integrity and its correlation with neuropsychological performance. This study strengthens the role of diet for maintaining brain and cognitive health and supports the noradrenergic theory of cognitive reserve. Within this framework, adequate tyrosine intake might increase the resilience of LC-NA system functioning, by preventing degeneration and supporting noradrenergic metabolism required for LC function and neuropsychological performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.