Defining the collision-free C-space is crucial in robotics to find whether a robot can successfully perform a motion. However, the complexity of defining this space increases according to the robot’s degree of freedom and the number of obstacles. Heuristics techniques, such as Monte Carlo’s simulation, help developers address this problem and speed up the whole process. Many well-known motion planning algorithms, such as RRT, base their popularity on their ability to find sufficiently good representations of the collision-free C-space very quickly by exploiting heuristics methods, but this mathematical relationship is not highlighted in most textbooks and publications. Each book focuses the attention of the reader on C-space at the beginning, but this concept is left behind page after page. Moreover, even though heuristics methods are widely used to boost algorithms, they are never formalized as part of the Optimization techniques subject. The major goal of this chapter is to highlight the mathematical and intuitive relationship between C-space, heuristic methods, and sampling based planner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.