Abstract-Evolvable hardware (EHW) refers to selfreconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). One of the main difficulties in using EHW to solve real-world problems is scalability, which limits the size of the circuit that may be evolved. This paper outlines a new type of decomposition strategy for EHW, the "generalized disjunction decomposition" (GDD), which allows the evolution of large circuits. The proposed method has been extensively tested, not only with multipliers and parity bit problems traditionally used in the EHW community, but also with logic circuits taken from the Microelectronics Center of North Carolina (MCNC) benchmark library and randomly generated circuits. In order to achieve statistically relevant results, each analyzed logic circuit has been evolved 100 times, and the average of these results is presented and compared with other EHW techniques. This approach is necessary because of the probabilistic nature of EA; the same logic circuit may not be solved in the same way if tested several times. The proposed method has been examined in an extrinsic EHW system using the (1 + λ) evolution strategy. The results obtained demonstrate that GDD significantly improves the evolution of logic circuits in terms of the number of generations, reduces computational time as it is able to reduce the required time for a single iteration of the EA, and enables the evolution of larger circuits never before evolved. In addition to the proposed method, a short overview of EHW systems together with the most recent applications in electrical circuit design is provided.Index Terms-Adaptive system, evolutionary computation, evolvable hardware (EHW), problem decomposition.
Abstract-This paper describes a new type of decomposition strategy for Evolvable Hardware, which tackles the problem of scalability. Several logic circuits from the MCNC benchmark have been evolved and compared with other Evolvable Hardware techniques. The results demonstrate that the proposed method improves the evolution of logic circuits in terms of time and fitness function in comparison with BIE and standard EHW.
Abstract-Evolutionary algorithms are used for solving search and optimization problems. A new field in which they are also applied is evolvable hardware, which refers to a self-configurable electronic system. However, evolvable hardware is not widely recognized as a tool for solving real-world applications, because of the scalability problem, which limits the size of the system that may be evolved. In this paper a new genetic algorithm, particularly designed for evolving logic circuits, is presented and tested for its scalability. The proposed algorithm designs and optimizes logic circuits based on a Programmable Logic Array (PLA) structure. Furthermore it allows the evolution of large logic circuits, without the use of any decomposition techniques. The experimental results, based on the evolution of several logic circuits taken from three different benchmarks, prove that the proposed algorithm is very fast, as only a few generations are required to fully evolve the logic circuits. In addition it optimizes the evolved circuits better than the optimization offered by other evolutionary algorithms based on a PLA and FPGA structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.