We show that a Wilson-type discretization of the Gross-Neveu model, a fermionic N-flavor quantum field theory displaying asymptotic freedom and chiral symmetry breaking, can serve as a playground to explore correlated symmetry-protected phases of matter using techniques borrowed from high-energy physics. A large-N study, both in the Hamiltonian and Euclidean formalisms, yields a phase diagram with trivial, topological, and symmetry-broken phases separated by critical lines that meet at a tri-critical point. We benchmark these predictions using tools from condensed matter and quantum information science, which show that the large-N method captures the essence of the phase diagram even at N = 1. Moreover, we describe a cold-atom scheme for the quantum simulation of this lattice model, which would allow to explore the single-flavor phase diagram.
The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more ‘accessible’ and easier to manipulate for experimentalists, but this ‘substitution’ also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or Z 2 Bose–Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz–Hubbard ladder, or Gross–Neveu–Wilson and Wilson–Hubbard models. This article is not a general review of the rapidly growing field—it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue ‘Quantum technologies in particle physics’.
PrefaceTensor network (TN), a young mathematical tool of high vitality and great potential, has been undergoing extremely rapid developments in the last two decades, gaining tremendous success in condensed matter physics, atomic physics, quantum information science, statistical physics, and so on. In this lecture notes, we focus on the contraction algorithms of TN as well as some of the applications to the simulations of quantum many-body systems. Starting from basic concepts and definitions, we first explain the relations between TN and physical problems, including the TN representations of classical partition functions, quantum many-body states (by matrix product state, tree TN, and projected entangled pair state), time evolution simulations, etc. These problems, which are challenging to solve, can be transformed to TN contraction problems. We present then several paradigm algorithms based on the ideas of the numerical renormalization group and/or boundary states, including density matrix renormalization group, time-evolving block decimation, coarsegraining/corner tensor renormalization group, and several distinguished variational algorithms. Finally, we revisit the TN approaches from the perspective of multilinear algebra (also known as tensor algebra or tensor decompositions) and quantum simulation. Despite the apparent differences in the ideas and strategies of different TN algorithms, we aim at revealing the underlying relations and resemblances in order to present a systematic picture to understand the TN contraction approaches. v AcknowledgementsWe are indebted to
We show that ultra-cold atoms with synthetic spin-orbit coupling in Raman lattices can be used as versatile quantum simulators to explore the connections between correlated Chern insulators and strongly-coupled four-Fermi field theories related to the Gross-Neveu model in (2+1) dimensions. Exploiting this multidisciplinary perspective, we identify a large-N quantum anomalous Hall (QAH) effect in absence of any external magnetic field, and use it to delimit regions in parameter space where these correlated topological phases appear, the boundaries of which are controlled by strongly-coupled fixed points of the four-Fermi relativistic field theory. We further show how, for strong interactions, the QAH effect gives way to magnetic phases described by a two-dimensional quantum compass model in a transverse field. We present a detailed description of the phase diagram using the large-N effective potential, and variational techniques such as projected entangled pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.