Black phosphorus (BP) is a two-dimensional material potentially of great interest for applications in the fields of energy, sensing, and microelectronics. One of the most interesting methods to obtain BP is the conversion from red phosphorus (RP) by means of high-energy mechanochemical synthesis. To date, however, this synthesis process was not well characterized. In this work, starting from the mathematical model of energy transfer during the ball milling process, we investigate the effects on RP → BP conversion of three experimental parameters, the rotation speed, the milling time, and the weight ratio between the spheres and the milled material (BtPw ratio). The efficiency of the conversion process was verified by solid-state NMR, Raman spectroscopy, and X-ray diffraction. Whereas the first two parameters have a minor importance, the BtPw ratio plays a primary role in the RP → BP conversion. Yields approaching 100% can be obtained also with short milling times (15 min) and adequate rotation speed (e.g., 500 r.p.m.), provided that the BtPw ratio >40:1 is used. These results confirm the energy sustainability of the mechanochemical synthesis approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.