Chemically reducing species formed during phosphate ion catalyzed degradation of reducing sugars were directly quantified by titration with 2,6-dichloroindophenol (Tillman's reagent) and by measurement of open circuit electrical redox potentials. Both techniques demonstrated a time-dependent increased production of chemically reducing species in 0.1 M phosphate buffer at 100 degrees C and the increasingly negative redox potentials observed were consistent with the formation of reductones. Cyclic voltammetry (CV) was investigated in an attempt to generate and observe the sugar-derived highly reactive reducing species in situ. CV analysis of a model Amadori compound, N-(1-deoxyfructos-1-yl)piperidine, indicated oxidative waves consistent with reductone formation, but chemical instability of the oxidation products formed precluded the electrochemical detection of highly electrophilic reducing species such as reductones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.