The relative efficiencies of electron tunneling across self-assembled monolayers (SAMs) of n-alkanethiols and n-alkaneselenols, CH(3)-(CH(2))(n)-XH, where n = 8, 9, 11, and X = S or Se, deposited on mercury electrodes were measured via electroreduction of Ru(NH(3))(6)(3+) in aqueous solutions. Electron tunneling rates across the monolayer films decay exponentially with the monolayer thickness with a tunneling coefficient, beta = 1.1 +/- 0.1 per CH(2) irrespective of the identity of the -XH headgroup. Electron tunneling rates across n-alkanethiol monolayers are ca. 4-fold larger than the rates measured across n-alkaneselenol monolayers containing the same number of carbon atoms, signifying the importance of headgroup/metal contact resistance in electron transfer through SAMs on mercury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.