The magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter 53–212 μm) were synthesized and characterized; their use as adsorbent in removal of Cr(VI) ions from aqueous solutions was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerizing of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterized by N2 adsorption/desorption isotherms, ESR, elemental analysis, scanning electron microscope (SEM) and swelling studies. At fixed solid/solution ratio the various factors affecting adsorption of Cr(VI) ions from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. Langmuir, Freundlich and Dubinin–Radushkvich isotherms were used as the model adsorption equilibrium data. Langmuir isotherm model was the most adequate. The pseudo-first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The apparent activation energy was found to be 5.024 kJ mol−1, which is characteristic of a chemically controlled reaction. The experimental data fitted to pseudo-second-order kinetic. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The thermodynamic parameters obtained indicated the endothermic nature of adsorption of Cr(VI) ions. Morever, after the use in adsorption, the m-poly(DVB-VIM) microbeads with paramagnetic property were separeted via the applied magnetic force. The magnetic beads could be desorbed up to about 97% by treating with 1.0 M NaOH. These features make the m-poly(DVB-VIM) microbeads a potential candidate for support of Cr(VI) ions removal under magnetic field.
Removal of Pb(II) ions from electroplating wastewater of Bursa, an industrial city in Turkey, was investigated in fixed-bed column. The experiments were conducted to study the effect of important design parameters such as column bed height and flow rate. The breakthrough profiles were obtained in these studies. At a bed height of 14 cm and flow rate of 6 mL/min, the metal-uptake capacity of poly(ethylene glycol dimethacrylate-1-vinylimidazole) [poly(EGDMA-VIM)] beads for Pb(II) ions was found to be 90 mg/g. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluate the performance of adsorption column. For various flow rates, adsorption capacity per unit bed volume (N0) and adsorption rate constant (ka) are in the range of 2370–3560 mg/mL and 0.0225–0.0616 L/mg h, respectively. The saturated column was easily regenerated by 0.1 M HNO3and the poly(EGDMA-VIM) beads in fixed-bed column could be reused for Pb(II) ions removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.