Background: Inter alpha inhibitor (I␣I) contains a protease inhibitor bikunin and two heavy chains. Complement activation is enhanced in mice lacking I␣I. Results: Human I␣I/its heavy chains added to serum inhibited all complement pathways at early stages. Conclusion: Human I␣I inhibits complement when enriched relative to complement components. Significance: Inhibition of complement by I␣I may be particularly important locally in tissues.
C3 and C5 convertases are central stages of the complement cascade since they converge the different initiation pathways, augment complement activation by an amplification loop and lead to a common terminal pathway resulting in the formation of the membrane attack complex. Several complement inhibitors attenuate convertase formation and/or accelerate dissociation of convertase complexes. Functional assays used to study these processes are often performed using purified complement components, from which enzymatic complexes are reconstituted on the surface of erythrocytes or artificial matrices. This strategy enables identification of individual interactions between convertase components and putative regulators but carries an inherent risk of detecting non-physiological interactions that would not occur in a milieu of whole serum. Here we describe a novel, alternative method based on C3 or C5-depleted sera, which support activation of the complement cascade up to the desired stages of convertases. This approach allows fast and simple assessment of the influence of putative regulators on convertase formation and stability. As an example of practical utility of the assay, we performed studies on thioredoxin-1 in order to clarify the mechanism of its influence on complement convertases.
Recently discovered Sushi domain-containing protein 4 (SUSD4) contains several Sushi or complement control protein domains; therefore, we hypothesized that it may act as complement inhibitor. Two isoforms of human SUSD4, fused to the Fc part of human IgG, were recombinantly expressed in Chinese hamster ovary (CHO) cells. The secreted soluble isoform of SUSD4 (SUSD4b) inhibited the classical and lectin complement pathways by 50% at a concentration of 0.5 μM. This effect was due to the fact that 1 μM SUSD4b inhibited the formation of the classical C3 convertase by 90%. The membrane-bound isoform (SUSD4a) inhibited the classical and alternative complement pathways when expressed on the surface of CHO cells but not when expressed as a soluble, truncated protein. In all functional studies, we used known complement inhibitors as positive controls, while Coxsackie adenovirus receptor, which has no effect on complement, expressed with Fc tag, was a negative control. We also studied the mRNA expression of both isoforms of SUSD4 in a panel of human tissues using quantitative PCR and primarily found SUSD4a in esophagus and brain, while SUSD4b was highly expressed in esophagus, ovary, and heart. Overall, our results show that SUSD4 is a novel complement inhibitor with restricted expression.
IntroductionComplexes between cartilage oligomeric matrix protein (COMP) and the complement activation product C3b have been found in the circulation of patients with rheumatoid arthritis and systemic lupus erythematosus. In systemic sclerosis (SSc) COMP expression in the skin is upregulated both in lesional and non-lesional skin, which is also reflected in an increased amount of circulating COMP. We investigated the presence of COMP-C3b complexes in serum and skin biopsies of patients with SSc.MethodsThe presence of COMP and COMP-C3b complexes in the serum of 80 patients with limited cutaneous SSc (lcSSc, n = 40) and diffuse cutaneous SSc (dcSSc, n = 40) and 97 healthy controls was measured by ELISA and correlated to different clinical parameters. Samples were collected both at baseline and after three to five years to assess longitudinal changes in COMP-C3b complex levels. Furthermore, skin biopsies from seven patients with dcSSc and three healthy controls were analyzed for expression of COMP and deposition of C3b and IgG.ResultsSerum levels of COMP-C3b were found to be elevated in both dcSSc and lcSSc compared to healthy controls and decreased at the second measurement in patients on immunosuppressive therapy. No co-localization of COMP and C3b was found in the skin biopsies, indicating that the COMP-C3b complexes are formed upon release of COMP into the circulation.ConclusionCOMP-C3b complexes are found in the serum of patients with SSc. The lack of co-localization between COMP and C3b in the skin suggests that COMP does not drive complement activation in the skin in SSc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.