Studies were conducted from 2015 to 2018 to evaluate spotted lanternfly (SLF) distribution and developmental suitability of different plant species in the U.S. Tree bands on 283 trees spanning 33 species captured 21,006 SLF in 2 yr. More SLF per tree were trapped on tree-of-heaven Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae) than on other species, on average, and most adults were captured on tree-of-heaven. Frequency of detection of adult SLF was higher on tree-of-heaven than on other species but was actually equal or lower on tree-of-heaven than on all other species combined for younger SLF stages in 2015. An enclosed choice test between tree-of-heaven and black walnut Juglans nigra L. (Fagales: Juglandaceae) revealed nymphs showed little consistent preference, whereas adults consistently and significantly preferred tree-of-heaven. No-choice field sleeve studies evaluated SLF survivorship on 26 host plant species in 17 families. Ten plant species supported SLF for an average of ≥45 d, with the rest unable to support SLF for >30 d. Eight species were able to support development from first instar to adult: black walnut, chinaberry Melia azedarach L. (Sapindales: Meliaceae), oriental bittersweet Celastrus orbiculatus Thunb. (Celastrales: Celastraceae), tree-of-heaven, hops Humulus lupulus L. (Rosales: Cannabaceae), sawtooth oak Quercus acutissima Carruthers (Fagales: Fagaceae), butternut Juglans cinerea L, and tulip tree Liriodendron tulipifiera L. (Magnoliales: Magnoliaceae). The ability of SLF to develop to adult on hosts other than tree-of-heaven may impact pest management decisions.
Lycorma delicatula (spotted lanternfly) has a broad host range with a strong preference for the invasive host plant from its native range, tree of heaven (Ailanthus altissima); it had long been speculated that L. delicatula could not develop or reproduce without access to tree of heaven. In 2019, we found that this assumption was incorrect, but fitness was reduced in the absence of A. altissima in that the number of egg masses laid was dramatically fewer for insects reared on suitable non-A. altissima host plants that had recently been established. We hypothesized that longer established, larger trees (of the same species) would improve the fitness of L. delicatula in the absence of tree of heaven. In spring 2020, we examined insect performance with and without access to A. altissima by tracking development, survival, host tree association and oviposition in large enclosures with trees planted two years prior to the study. Each enclosure included one each of Juglans nigra, Salix babylonica and Acer saccharinum along with either one A. altissima or one Betula nigra; these trees had twice the diameter of the same trees the previous year. We reared nymphs with and without access to A. altissima, released them into the corresponding large enclosures as third instars, and monitored them from early July 2020 through November 2020. We also determined whether lack of access to A. altissima by parents of L. delicatula have any fitness effects on offspring performance. To ensure adequate adult populations for comparing fecundity between treatments, third instars were released into the multi-tree enclosures due to high mortality in earlier instars that occurred in a similar study in 2019. Insect survival was higher and development faster with access to A. altissima. Third and fourth instar nymphs were most frequently observed on A. altissima when it was present, while adults were equally associated with A. saccharinum and A. altissima. In the absence of A. altissima, nymphs were most frequently found on S. babylonica, while adults were most often on A. saccharinum. Females with access to A. altissima deposited nearly 7-fold more egg masses than those without access to A. altissima, which is consistent with the difference in egg mass numbers between the two treatments the previous year; thus, our hypothesis was rejected. The offspring of parents that had been reared without access to A. altissima showed similar survival and development time from egg to adult as offspring from parents that never had access to A. altissima. These findings suggest that managers need to be aware that even in the absence of A. altissima in the landscape, several hardwood host trees can be utilized by L. delicatula to develop and reproduce, but fitness without A. altissima is likely to still be reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.