Klebsiella pneumoniae is an important opportunistic pathogen that commonly causes nosocomial infections and contributes to substantial morbidity and mortality. We sought to investigate the antibiotic resistance profile, pathogenic potential and the clonal relationships between K. pneumoniae (n = 25) isolated from patients and sources at a tertiary care hospital’s intensive care units (ICUs) in the northern region of Brazil. Most of K. pneumoniae isolates (n = 21, 84%) were classified as multidrug resistant (MDR) with high-level resistance to β-lactams, aminoglycosides, quinolones, tigecycline, and colistin. All the 25 isolates presented extended-spectrum beta-lactamase-producing (ESBL), including carbapenemase producers, and carried the blaKPC (100%), blaTEM (100%), blaSHV variants (n = 24, 96%), blaOXA-1 group (n = 21, 84%) and blaCTX-M-1 group (n = 18, 72%) genes. The K2 serotype was found in 4% (n = 1) of the isolates, and the K1 was not detected. The virulence-associated genes found among the 25 isolates were mrkD (n = 24, 96%), fimH-1 (n = 22, 88%), entB (100%), iutA (n = 10, 40%), ybtS (n = 15, 60%). The genes related with efflux pumps and outer membrane porins found were AcrAB (100%), tolC (n = 24, 96%), mdtK (n = 22, 88%), OmpK35 (n = 15, 60%), and OmpK36 (n = 7, 28%). ERIC-PCR was employed to determine the clonal relationship between the different isolated strains. The obtained ERIC-PCR patterns revealed that the similarity between isolates was above 70%. To determine the sequence types (STs) a multilocus sequence typing (MLST) assay was used. The results indicated the presence of high-risk international clones among the isolates. In our study, the wide variety of MDR K. pneumoniae harboring β-lactams and virulence genes strongly suggest a necessity for the implementation of effective strategies to prevent and control the spread of antibiotic resistant infections.
BackgroundOdorant-binding proteins (OBPs) are of great importance for survival and reproduction since they participate in initial steps of the olfactory signal transduction cascade, solubilizing and transporting chemical signals to the olfactory receptors. A comparative analysis of OBPs between closely related species may help explain how these genes evolve and are maintained under natural selection and how differences in these proteins can affect olfactory responses. We studied OBP genes in the closely related species Anastrepha fraterculus and A. obliqua, which have different host preferences, using data from RNA-seq cDNA libraries of head and reproductive tissues from male and female adults, aiming to understand the speciation process occurred between them.ResultsWe identified 23 different OBP sequences from Anastrepha fraterculus and 24 from A. obliqua, which correspond to 20 Drosophila melanogaster OBP genes. Phylogenetic analysis separated Anastrepha OBPs sequences in four branches that represent four subfamilies: classic, minus-C, plus-C and dimer. Both species showed five plus-C members, which is the biggest number found in tephritids until now. We found evidence of positive selection in four genes and at least one duplication event that preceded the speciation of these two species. Inferences on tertiary structures of putative proteins from these genes revealed that at least one positively selected change involves the binding cavity (the odorant binding region) in the plus-C OBP50a.Conclusions A. fraterculus and A. obliqua have a bigger OBP repertoire than the other tephritids studied, though the total number of Anastrepha OBPs may be larger, since we studied only a limited number of tissues. The contrast of these closely related species reveals that there are several amino acid changes between the homologous genes, which might be related to their host preferences. The plus-C OBP that has one amino acid under positive selection located in the binding cavity may be under a selection pressure to recognize and bind a new odorant. The other positively selected sites found may be involved in important structural and functional changes, especially ones in which site-specific changes would radically change amino acid properties.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0775-0) contains supplementary material, which is available to authorized users.
Serratia marcescens has emerged as an important opportunistic pathogen responsible for nosocomial and severe infections. Here, we determined phenotypic and molecular characteristics of 54 S. marcescens isolates obtained from patient samples from intensive-care-unit (ICU) and neonatal intensive-care-unit (NIUC) of a Brazilian tertiary hospital. All isolates were resistant to beta-lactam group antibiotics, and 92.6% (50/54) were not susceptible to tigecycline. Furthermore, 96.3% showed intrinsic resistance to polymyxin E (colistin), a last-resort antibiotic for the treatment of infections caused by MDR (multidrug-resistant) Gram-negative bacteria. In contrast, high susceptibility to other antibiotics such as fluoroquinolones (81.5%), and to aminoglycosides (as gentamicin 81.5%, and amikacin 85.2%) was found. Of all isolates, 24.1% were classified as MDR. The presence of resistance and virulence genes were examined by PCR and sequencing. All isolates carried KPC-carbapenemase (bla KPC) and extended spectrum beta-lactamase bla TEM genes, 14.8% carried bla OXA−1 , and 16.7% carried bla CTX−M−1group genes, suggesting that bacterial resistance to β-lactam antibiotics found may be associated with these genes. The genes SdeB/HasF and SdeY/HasF that are associated with efflux pump mediated drug extrusion to fluoroquinolones and tigecycline, respectively, were found in 88.9%. The aac(6)-Ib-cr variant gene that can simultaneously induce resistance to aminoglycoside and fluoroquinolone was present in 24.1% of the isolates. Notably, the virulence genes to (i) pore-forming toxin (ShlA); (ii) phospholipase with hemolytic and cytolytic activities (PhlA); (iii) flagellar transcriptional regulator (FlhD); and (iv) positive regulator of prodigiosin and serratamolide production (PigP) were present in 98.2%. The genetic relationship among the isolates determined by ERIC-PCR demonstrated that the vast majority of isolates were grouped in a single cluster with 86.4% genetic similarity. In addition, many isolates showed 100% genetic similarity to each other, suggesting that the S. marcescens that circulate in this ICU are closely related. Our results suggest that the antimicrobial resistance to many drugs
We studied two species of closely related South American fruit flies, Anastrepha fraterculus and Anastrepha obliqua which, despite being able to interbreed, still show some ecological and reproductive differences. Because part of these differences, such as host and mate preferences, may be related to olfactory perception, we focused our investigation on the differential expression of Odorant-binding protein (OBP) gene family, which participate in initial steps of the olfactory signal transduction cascade. We investigated patterns of expression of eight OBP genes by qPCR in male and female head tissues of both species. The expression patterns of these OBPs suggest that some OBP genes are more likely involved with the location of food resources, while others seem to be associated with mate and pheromone perception. Furthermore, the expression patterns obtained at different reproductive stages indicate that OBP expression levels changed significantly after mating in males and females of both species. All eight OBP genes analyzed here showed significant levels of differential expression between A. fraterculus and A. obliqua, suggesting that they may hold important roles in their olfactory perception differences, and consequently, may potentially be involved in their differentiation.
Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.