Bromine complexing agents (BCAs) are used to reduce the vapor pressure of bromine in the aqueous electrolytes of bromine flow batteries. BCAs bind hazardous, volatile bromine by forming a second, heavy liquid fused salt. The properties of BCAs in a strongly acidic bromine electrolyte are largely unexplored. A total of 38 different quaternary ammonium halides are investigated ex situ regarding their properties and applicability in bromine electrolytes as BCAs. The focus is on the development of safe and performant HBr/Br2/H2O electrolytes with a theoretical capacity of 180 Ah L−1 for hydrogen bromine redox flow batteries (H2/Br2-RFB). Stable liquid fused salts, moderate bromine complexation, large conductivities and large redox potentials in the aqueous phase of the electrolytes are investigated in order to determine the most applicable BCA for this kind of electrolyte. A detailed study on the properties of BCA cations in these parameters is provided for the first time, as well as for electrolyte mixtures at different states of charge of the electrolyte. 1-ethylpyridin-1-ium bromide [C2Py]Br is selected from 38 BCAs based on its properties as a BCA that should be focused on for application in electrolytes for H2/Br2-RFB in the future.
Bromine complexing agents (BCA) in aqueous electrolytes for hydrogen bromine flow batteries are used to reduce bromine‘s vapour pressure, while an insoluble and liquid fused salt is formed. The properties (concentrations, composition, conductivity and viscosity) of this fused salt are investigated in this study systematically ex situ by using 7 BCAs at different state of charge in HBr/Br2/H2O electrolytes with a theoretical capacity of 179.6 Ah L−1. Bromine is stored in the fused salt at concentrations up to 13.6 M, reaching theoretical volumetrical capacities up to 730 Ah L−1 in fused salts. The fused salt consists of a pure, bromine‐ and water‐free ionic liquid of organic [BCA]+ cations and polybromides, and its conductivity bases on a hopping mechanism among the polybromides. Alkyl side chain length of the BCAs and distribution of polybromides influence strongly the conductivity and viscosity of the fused salts. 1‐ethylpyridin‐1‐iumbromide results to be favoured BCA for application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.