Hypersonic flight is expected to be achieved in the coming years by use of Supersonic Combustion RAMJET (SCRAMJET). One of the main issues is the thermal management of the overall vehicle and more specifically the cooling of the engine. In order to simulate the behaviour of an actively cooled SCRAMJET by use of supercritical endothermic fuel, a one-dimensional transient numerical model has been developed with heat and mass transfer, fluid mechanics and detailed pyrolysis chemistry. A dedicated experimental test bench is now available since 2006 at the LEES laboratory of Bourges to study supercritical fuel pyrolysis under steady-state and transient conditions. It aims to provide understanding of coupled phenomena, validation data for the numerical code and evaluation of onboard and real-time measurement methods for industrial use. A brief overview of the numerical code and a presentation of the experimental bench are proposed in this paper. Experimental results are discussed and a comparison is provided between numerical and experimental data. Discrepancies are shown to be lower than a few percent in terms of molar chemical compositions. This is due to uncertainties on experimental temperature measurement and to 2-D effects, which are not taken into account by the modelling. The numerical code appears to be of great importance in accessing unmeasured data and providing new understanding of coupled phenomena. Experimental and numerical tools are proved to be efficient to test future measurement methods under extreme conditions, especially at supercritical states.
Continuous Detonation Wave Rocket Engine (CDWRE) for space application is considered in the framework of French R&D and scienti¦c research. A CDWRE demonstrator and a dedicated test bench are designed by MBDA France. At ICARE-CNRS, theoretical and experimental studies on the CDWRE internal processes are under progress. Twodimensional (2D) Euler simulations of a CDWRE combustion chamber have been performed to investigate the e¨ect of geometrical and injection parameters on the internal process and combustion chamber performance. An experimental study is prepared to investigate liquid oxygen breakup and vaporization in a helium §ow as well as detonation initiation and propagation in a spray of liquid oxygen/gaseous hydrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.