We demonstrate the physical generation of random bits at high bit rates (> 100 Gb/s) using optical chaos from a solitary laser diode and therefore without the complex addition of either external optical feedback or injection. This striking result is obtained despite the low dimension and relatively small bandwidth of the laser chaos, i.e. two characteristics that have been so far considered as limiting the performances of optical chaos-based applications. We unambiguously attribute the successful randomness at high speed to the physics of the laser chaotic polarization dynamics and the resulting growth rate of the dynamical entropy.
We demonstrate numerically that a semiconductor laser subjected to phase-conjugate feedback (PCF) can exhibit an enhancement in the complexity of chaos by comparison to conventional optical feedback. Using quantifiers from spectral analysis and information theory, we demonstrate that under similar parametric conditions, PCF exhibits a larger chaotic bandwidth and higher spectral flatness and statistical complexity. These properties are of utmost importance for applications in secure communications and random number generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.