The research for new mineral oil substitutes focuses on vegetable oils known for their biodegradability and low toxicity. This paper focuses on the development and analysis of physicochemical and dielectric properties of a bio-based insulating liquid from castor oil. Castor oil is an inedible tropical resource. It has a good annual oil yield and is widely available in developing countries. Cold pressing of castor seeds is the most appropriate non-chemical process for extracting oil. A refining process was used to remove metal and chemical residues. Refined Castor Oil was filtered and degassed in order to minimize the dissolved gases, solid particles and moisture. A transesterification operation was performed to significantly reduce viscosity oil. Finally, obtained Castor Oil Methyl Esters (COME) are finally distilled in a rotary evaporator under vacuum to remove traces of water and methanol. Physicochemical properties as visual examination, relative density, kinematic viscosity, and acidity were measured in accordance with ASTM D6871. AC Breakdown voltage was performed according to IEC 60156, and had been analyzed using Weibull distribution. Processed Castor Oil (PCO) has low viscosity than certified transformer vegetable oils (BIOTEMP, FR3) and high Dielectric Strength (74.67 kV/2.5 mm). Partial Discharges characteristics including the Partial Discharge Inception Voltage and the Partial Discharge Propagation Voltage were also investigated according to the recommendations of IEC 61294. PCO has satisfactory properties for their use as an insulating oil for transformer.
This article deals with a comparative study of the physicochemical and electrical properties of monoesters of castor oil compared with their counterparts based on FeO3 and ZnO nanoparticles. The results are also compared with those in the literature on triesters, and also with the recommendations of the IEEE C 57.14 standard. The data is analysed statistically using a goodness-of-fit test. The analysis of the viscosity data at 40 °C shows an increase in viscosity. For concentrations of 0.10 wt%, 0.15 wt% and 0.20 wt% these are respectively 5.4%, 9.69%, 12.9% for FeO3 NFs and 7.6%, 9.91% and 12.7% for ZnO NFs. For the same concentrations, the increase in acid number is respectively 3.2%, 2.9%, 2.5% for FeO3 samples and 3.18%, 2.0%, 1.2% for ZnO samples. For the same concentrations, the fire point shows an increment of 4%, 3% and 2% for FeO3 samples and a regression of 8.75%, 6.88% and 5.63% for ZnO samples. As for the breakdown voltage, for the same concentrations we observe respectively an increment of 43%, 27%, 34% for the FeO3. The results show an improvement on partial discharge inception voltage with FeO3 of 24%, 8.13% and 15.21% respectively for the concentrations 0.10 wt%, 0.15 wt% and 0.20 wt%.
This paper is devoted to a comparative analysis of thermal ageing tests of Thermally Upgraded Kraft (TUK) and Nomex-910 papers dipped in palm kernel oil methyl ester (MEPKO), at 110, 130, and 150 °C, for 96 h each. After ageing, paper breakdown voltage (BDV), oils’ dissipation factor, dielectric constant and oxidation stability were determined. Nomex’s BDV was greater than TUK BDV. However, the dissipation factor of the Nomex samples is slightly higher than that of TUK, and the dielectric constant has the opposite behaviour. In addition, the decay content of Nomex/MEPKO was greater than with TUK/MEPKO. These experimental findings indicate that Nomex can be mainly used in high voltage, and TUK in medium voltage power transformers respectively, to allow judicious use of their individual characteristics and money savings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.