Nitric oxide (*NO) is a pervasive free radical species that concentrates in lipophilic compartments to serve as a potent inhibitor of lipid and low-density lipoprotein oxidation processes. In this study, we synthesized, characterized, and detected nitrated derivatives of linoleic acid (18:2) in human blood plasma using high-pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry. While the reaction of nitronium tetrafluoroborate with 18:2 presented ions with a mass/charge (m/z) ratio of 324 in the negative ion mode, characteristic of nitrolinoleate (LNO(2)), the reaction of nitrite (NO(2)(-)) with linoleic acid hydroperoxide yielded nitrohydroxylinoleate (LNO(2)OH, m/z 340). Further analysis by MS/MS gave a major fragment at m/z 46, characteristic of a nitro group (-NO(2)) present in the parent ion. This was confirmed by using [(15)N]O(2), which gave products of m/z 325 and 341, that after fragmentation yielded a daughter ion at m/z 47. Moreover, a C-NO(2) structure was also demonstrated in LNO(2)OH by nuclear magnetic resonance spectroscopy ((15)N NMR, delta 375.9), as well as by infrared analysis in both LNO(2)OH (nu(max) = 3427, 1553, and 1374 cm(-1)) and LNO(2) (nu(max) = 1552 and 1373 cm(-1)). Stable products with m/z of 324 and 340, which possessed the same chromatographic characteristics and fragmentation pattern as synthesized standards, were found in human plasma of normolipidemic and hyperlipidemic donors. The presence of these novel nitrogen-containing oxidized lipid adducts in human plasma could represent "footprints" of the antioxidant action of *NO on lipid oxidation and/or a pro-oxidant and nitrating action of *NO-derived species.
Nitric oxide ( • NO) and • NO-derived reactive species (e.g., peroxynitrite anion, nitrogen dioxide radical) react with lipids containing unsaturated fatty acids to generate nitrated species. In the present work, we synthesized, characterized, and detected a nitrated derivative of cholesteryl linoleate (Ch18:2) in human blood plasma and lipoproteins using a high-pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry method. It was synthesized by a reaction of Ch18:2 with nitronium tetrafluoroborate, yielding a species with m/z 711, which is characteristic of the cholesteryl nitrolinoleate (Ch18:2NO 2 ) ammonium adduct. The presence of the nitro group was confirmed by us-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.