Air pollution episodes have been associated with increased cardiovascular hospital admissions and mortality in time-series studies. We tested the hypothesis that patients with implanted cardioverter defibrillators experience potentially life-threatening arrhythmias after such air pollution episodes. We compared defibrillator discharge interventions among 100 patients with such devices in eastern Massachusetts, according to variations in concentrations of particulate matter, black carbon, and gaseous air pollutants that were measured daily for the years 1995 through 1997. A 26-ppb increase in nitrogen dioxide was associated with increased defibrillator interventions 2 days later (odds ratio = 1.8; 95% confidence interval = 1.1-2.9). Patients with ten or more interventions experienced increased arrhythmias in association with nitrogen dioxide, carbon monoxide, black carbon, and fine particle mass. These results suggest that elevated levels air pollutants are associated with potentially life-threatening arrhythmia leading to therapeutic interventions by an implanted cardioverter defibrillator.
Background-Recognition of myocardial ischemia is critical both for the diagnosis of coronary artery disease and the selection and evaluation of therapy. Recent advances in proteomic and metabolic profiling technologies may offer the possibility of identifying novel biomarkers and pathways activated in myocardial ischemia. Methods and Results-Blood samples were obtained before and after exercise stress testing from 36 patients, 18 of whom demonstrated inducible ischemia (cases) and 18 of whom did not (controls). Plasma was fractionated by liquid chromatography, and profiling of analytes was performed with a high-sensitivity electrospray triple-quadrupole mass spectrometer under selected reaction monitoring conditions. Lactic acid and metabolites involved in skeletal muscle AMP catabolism increased after exercise in both cases and controls. In contrast, there was significant discordant regulation of multiple metabolites that either increased or decreased in cases but remained unchanged in controls.Functional pathway trend analysis with the use of novel software revealed that 6 members of the citric acid pathway were among the 23 most changed metabolites in cases (adjusted Pϭ0.04
Emerging metabolomic tools have created the opportunity to establish metabolic signatures of myocardial injury. We applied a mass spectrometry-based metabolite profiling platform to 36 patients undergoing alcohol septal ablation treatment for hypertrophic obstructive cardiomyopathy, a human model of planned myocardial infarction (PMI). Serial blood samples were obtained before and at various intervals after PMI, with patients undergoing elective diagnostic coronary angiography and patients with spontaneous myocardial infarction (SMI) serving as negative and positive controls, respectively. We identified changes in circulating levels of metabolites participating in pyrimidine metabolism, the tricarboxylic acid cycle and its upstream contributors, and the pentose phosphate pathway. Alterations in levels of multiple metabolites were detected as early as 10 minutes after PMI in an initial derivation group and were validated in a second, independent group of PMI patients. A PMI-derived metabolic signature consisting of aconitic acid, hypoxanthine, trimethylamine N-oxide, and threonine differentiated patients with SMI from those undergoing diagnostic coronary angiography with high accuracy, and coronary sinus sampling distinguished cardiac-derived from peripheral metabolic changes. Our results identify a role for metabolic profiling in the early detection of myocardial injury and suggest that similar approaches may be used for detection or prediction of other disease states.
Background-Studies to define the overall contribution of lymphocytes to lesion formation in atherosclerosis-susceptible mice have demonstrated relatively subtle effects; the use of lymphocyte-deficient mice, however, compromises both the effector and regulatory arms of the immune system. Here, we tested the hypothesis that deletion of CXCL10 (IP-10), a chemokine specific for effector T cells that has been localized within atherosclerotic lesions, would significantly inhibit atherogenesis. Methods and Results-Compound deficient ApoeϪ/Ϫ /Cxcl10 Ϫ/Ϫ mice fed a Western-style diet for either 6 or 12 weeks demonstrated significant reductions in atherogenesis as compared with Apoe Ϫ/Ϫ controls, as assessed by both aortic en face and cross-sectional analyses. Immunohistochemical studies revealed a decrease in the accumulation of CD4 ϩ T cells, whereas quantitative polymerase chain reaction analysis of lesion-rich aortic arches demonstrated a marked reduction in mRNA for CXCR3, the CXCL10 chemokine receptor. Although overall T-cell accumulation was diminished significantly, we found evidence to suggest that regulatory T-cell (T reg ) numbers and activity were enhanced, as assessed by increased message for the T reg -specific marker Foxp3, as well as increases in immunostaining for the T reg -associated cytokines interleukin-10 and transforming growth factor-1. We also documented naturally occurring T reg cells in human atherosclerotic lesions. Conclusions-We provide novel evidence for a functional role for the effector T-cell chemoattractant CXCL10 in atherosclerotic lesion formation by modulating the local balance of the effector and regulatory arms of the immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.