Curaua nanofibers extracted under different conditions were investigated. The raw fibers were mercerized with NaOH solutions; they were then submitted to acid hydrolysis using three different types of acids (H 2 SO 4 , a mixture of H 2 SO 4 /HCl and HCl). The fibers were analyzed by cellulose, lignin and hemicellulose contents; viscometry, X-ray diffraction (XRD) and thermal stability by thermogravimetric analysis (TG). The nanofibers were morphologically characterized by transmission electron microscopy (TEM) and their surface charges in suspensions were estimated by Zeta-potential. Their degree of polymerization (DP) was characterized by viscometry, crystallinity by XRD and thermal stability by TG. Increasing the NaOH solution concentration in the mercerization, there was a decrease of hemicellulose and lignin contents and consequently an increase of cellulose content. XRD patterns presented changes in the crystal structure from cellulose I to cellulose II when the fibers were mercerized with 17.5% NaOH solution. All curaua nanofibers presented a rod-like shape, an average diameter (D) of 6-10 nm and length (L) of 80-170 nm, with an aspect ratio (L/D) of around 13-17. The mercerization of fibers with NaOH solutions influenced the crystallinity index and thermal stability of the resulting nanofibers. The fibers mercerized with NaOH solution 17.5% resulted in more crystalline nanofibers, but thermally less stable and inferior DP. The aggregation state increases with the amount of HCl introduced into the extraction, due to the decrease of surface charges (as verified by Zeta Potential analysis). However, this release presented nanofibers with better thermal stability than those whose acid hydrolysis was carried out using only H 2 SO 4 .
There is growing interest in cellulose nanofibres from renewable sources for several industrial applications. However, there is a lack of information about one of the most abundant cellulose pulps: bleached Eucalyptus kraft pulp. The objective of the present work was to obtain Eucalyptus cellulose micro/nanofibres by three different processes, namely: refining, sonication and acid hydrolysis of the cellulose pulp. The refining was limited by the low efficiency of isolated nanofibrils, while sonication was more effective for this purpose. However, the latter process occurred at the expense of considerable damage to the cellulose structure. The whiskers obtained by acid hydrolysis resulted in nanostructures with lower diameter and length, and high crystallinity. Increasing hydrolysis reaction time led to narrower and shorter whiskers, but increased the crystallinity index. The present work contributes to the different widespread methods used for the production of micro/nanofibres for different applications.
Muscle failure promotes greater muscle hypertrophy in low-load but not in high-load resistance training. J Strength Cond Res 36(2): 346-351, 2022-The purpose of this study was to investigate the effects of an 8-week resistance training program at low and high loads performed with and without achieving muscle failure on muscle strength and hypertrophy. Twenty-five untrained men participated in the 8-week study. Each lower limb was allocated to 1 of 4 unilateral knee extension protocols: repetitions to failure with low load (LL-RF; ;34.4 repetitions); repetitions to failure with high load (HL-RF; ;12.4 repetitions); repetitions not to failure with low load (LL-RNF; ;19.6 repetitions); and repetitions not to failure with high load (HL-RNF; ;6.7 repetitions). All conditions performed 3 sets with total training volume equated between conditions. The HL-RF and HL-RNF protocols used a load corresponding to 80% 1 repetition maximum (RM), while LL-RF and LL-RNF trained at 30% 1RM. Muscle strength (1RM) and quadriceps cross-sectional area (CSA) were assessed before and after intervention. Results showed that 1RM changes were significantly higher for HL-RF (33.8%, effect size [ES]: 1.24) and HL-RNF (33.4%, ES: 1.25) in the post-test when compared with the LL-RF and LL-RNF protocols (17.7%, ES: 0.82 and 15.8%, ES: 0.89, respectively). Quadriceps CSA increased significantly for HL-RF (8.1%, ES: 0.57), HL-RNF (7.7%, ES: 0.60), and LL-RF (7.8%, ES: 0.45), whereas no significant changes were observed in the LL-RNF (2.8%, ES: 0.15). We conclude that when training with low loads, training with a high level of effort seems to have greater importance than total training volume in the accretion of muscle mass, whereas for high load training, muscle failure does not promote any additional benefits. Consistent with previous research, muscle strength gains are superior when using heavier loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.