Deeply buried Pannonian (Upper Miocene) siliciclastic deposits show evidence of secondary porosity development via dissolution processes at a late stage of diagenesis. This is demonstrated by detailed petrographic (optical, cathodoluminescence, fluorescence, and scanning electron microscopy) as well as elemental and stable isotope geochemical investigations of lacustrine deposits from the Makó Trough, the deepest depression within the extensional Pannonian back-arc basin. The analyses were carried out on core samples from six wells located in various positions from centre to margins of the trough. The paragenetic sequence of three formations was reconstructed with special emphasis on sandstone beds in a depth interval between ca 2700 and 5500 m. The three formations consist, from bottom to top, of (1) open-water marls of the Endrőd Formation, which is a hydrocarbon source rock with locally derived coarse clastics and (2) a confined and (3) an unconfined turbidite system (respectively, the Szolnok and the Algyő Formation). In the sandstones, detrital grains consist of quartz, feldspar, and mica, as well as sedimentary and metamorphic rock fragments. The quartz content is high in the upper, unconfined turbidite formation (Algyő), whereas feldspars and rock fragments are more widespread in the lower formations (Szolnok and Endrőd). Eogenetic minerals are framboidal pyrite, calcite, and clay minerals. Mesogenetic minerals are ankerite, ferroan calcite, albite, quartz, illite, chlorite, and solid bituminous organic matter. Eogenetic finely crystalline calcite yielded δ13 C V − PDB values from 1.4 to 0.7‰ and δ18 O V − PDB values from –6.0 to –7.4‰, respectively. Mesogenetic ferroan calcite yielded δ13 C V − PDB values from 2.6 to –1.2‰ and δ18 O V − PDB values from –8.3 to –14.0‰, respectively. In the upper part of the turbidite systems, remnants of the migrated organic matter are preserved along pressure dissolution surfaces. All these features indicate that compaction and mineral precipitations resulted in tightly cemented sandstones prior to hydrocarbon migration. Interconnected, secondary, open porosity is associated with pyrite, kaolinite/dickite, and postdates of the late-stage calcite cement. This indicates that dissolution processes took place in the deep burial realm in an extraformational fluid-dominated diagenetic system. The findings of this study add a unique insight to the previously proposed hydrological model of the Pannonian Basin and describe the complex interactions between the basinal deposits and the basement blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.