Lower vertebrates can detect UV light with the pineal complex independently of eyes. Electrophysiological studies, together with chromophore extraction analysis, have suggested that the underlying pigment in the lamprey pineal exhibits a bistable nature, that is, reversible photoreaction by UV and visible light, which is never achieved by known UV pigments. Here we addressed the molecular identification of the pineal UV receptor. Our results showed that the long-hypothesized pigment is a lamprey homologue of parapinopsin, which exhibits an absorption maximum at 370 nm, in the UV region. UV light causes cis-trans isomerization of its retinal 2 chromophore, forming a stable photoproduct having an absorption maximum at 515 nm, in the green region. The photoproduct reverts to the original pigment upon visible light absorption, showing photoregeneration of the pigment. In situ hybridization showed that parapinopsin is selectively expressed in the cells located in the dorsal region of the pineal organ. We successfully obtained the hyperpolarizing responses with a maximum sensitivity of Ϸ380 nm from the photoreceptor cells at the dorsal region, in which the outer segment was clearly stained with anti-parapinopsin antibody. These results demonstrated that parapinopsin is the pineal UV pigment having photointerconvertible two stable states. The bistable nature of the parapinopsin can account for the photorecovery of the pineal UV sensitivity by background green light in the lamprey. Furthermore, we isolated the parapinopsin homologues from fish and frog pineal complexes that exhibit UV sensitivity, suggesting that parapinopsin is a common molecular basis for pineal UV reception in the vertebrate.
Our previous study demonstrated that the paraventricular organ (PVO) in the hypothalamus of the Japanese grass lizard (Takydromus tachydromoides) showed immunoreactivity against the light signal-transducing G-protein, transducin. This finding suggested that the PVO was a candidate for the deep-brain photoreceptor in this species. To understand functions of the PVO, we investigated distributions of transducin, serotonin, gonadotropin-releasing hormone (GnRH), and gonadotropin-inhibitory hormone (GnIH) in the lizard's brain. We immunohistochemically confirmed co-localization of transducin and serotonin in PVO neurons that showed structural characteristics of cerebrospinal fluid (CSF)-contacting neurons. GnRH-immunoreactive (ir) cells were localized in the posterior commissure and lateral hypothalamic area. Some of the serotonin-ir fibers extending from the PVO to the lateral hypothalamic area contacted the GnRH-ir cell bodies. GnIH-ir cells were localized in the nucleus accumbens, paraventricular nucleus, and upper medulla, and GnIH-ir fibers from the paraventricular nucleus contacted the lateral processes of serotonin-ir neurons in the PVO. In addition, we found that serotonin-ir fibers from the PVO extended to the suprachiasmatic nucleus (SCN), and the retrograde transport method confirmed the PVO projections to the SCN. These findings suggest that the PVO, by means of innervation mediated by serotonin, plays an important role in the regulation of pituitary function and the biological clock in the Japanese grass lizard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.