Bone sialoprotein (BSP) is a sulfated and phosphorylated glycoprotein, found almost exclusively in mineralized connective tissues, that may function in the nucleation of hydroxyapatite crystals. We have found that expression of BSP in osteoblastic ROS 17/2.8 cells is stimulated by fibroblast growth factor 2 (FGF2), a potent mitogen for mesenchymal cells. Stimulation of BSP mRNA with 10 ng/ml FGF2 was first evident at 3 h ( approximately 2.6-fold) and reached maximal levels at 6 h ( approximately 4-fold). From transient transfection assays, a FGF response element (FRE) was identified (nucleotides -92 to -85, "GGTGAGAA") as a target of transcriptional activation by FGF2. Ligation of two copies of the FRE 5' to an SV40 promoter was sufficient to confer FGF-responsive transcription. A sequence-specific protein-DNA complex, formed with a double-stranded oligonucleotide encompassing the FRE and nuclear extracts from ROS 17/2.8 cells, but not from fibroblasts, was increased following FGF2 stimulation. Several point mutations within the critical FRE sequence abrogated the formation of this complex and suppressed both basal and FGF2-mediated promoter activity. These studies, therefore, have identified a novel FRE in the proximal promoter of the BSP gene that mediates both constitutive and FGF2-induced BSP transcription.
The immediate-early cyclooxygenase-2 (COX-2) gene encodes an inducible prostaglandin synthase enzyme which is implicated in inflammatory and proliferative diseases. COX-2 is highly induced during cell activation by various factors, including mitogens, hormones and cytokines. Since pro-inflammatory cytokine IL-1beta has been shown to induce prostaglandin E2 (PGE2) release in human gingival fibroblasts (HGF), here we analyzed the effect of IL-1beta on the expression of COX-2 and the activation of NFkappaB in HGF. Northern hybridization analysis revealed that IL-1beta (200 pg/ml) increased the expression of COX-2 mRNA in HGF. The effect of IL-1beta was abrogated by herbimycin A, a protein tyrosine kinase inhibitor, and enhanced by orthovanadate, a protein tyrosine phosphatase inhibitor. IL-1beta-induced PGE2 release was blocked by the tyrosine kinase inhibitor and increased by the tyrosine phosphatase inhibitor. The results of transient transfection assays using chimeric constructs of the human COX-2 promoter (nt -1432 approximately +59) ligated to a luciferase reporter gene indicated that IL-1beta stimulated the transcriptional activity approximately 1.5-fold. Gel mobility shift assays with a radiolabelled COX-2-NFkappaB oligonucleotide (nts-223 to-214) revealed an increase in the binding of nuclear proteins from IL-1beta-stimulated HGF. This increase of DNA-protein complex formation induced by IL-1beta was blocked by herbimycin A and another tyrosine kinase inhibitor, genistein. These results suggest that NFkappaB is an important transcription factor for IL-1beta-induced COX-2 gene expression, and is involved in inducing COX-2 gene transcription through tyrosine phosphorylation in HGF.
Bone sialoprotein (BSP), an early marker of osteoblast differentiation, has been implicated in the nucleation of hydroxyapatite during de novo bone formation. Basic fibroblast growth factor (FGF2) is recognized as a potent mitogen for a variety of mesenchymal cells. In skeletal tissues, FGF2 produced by osteoblasts accumulates in the bone matrix and acts as an autocrine/paracrine regulator of bone cells. To determine the molecular mechanism of FGF2 regulation of osteogenesis, we have analyzed the effects of FGF2 on the expression of BSP in the rat osteosarcoma cell line ROS 17/2.8. FGF2 at 10 ng/ml, increased BSP mRNA levels approximately 4-fold; the stimulation was first evident at 3 hr, reached maximal levels at 6 hr. The stability of the BSP mRNA was not significantly affected by FGF2, suggesting that the increased mRNA was due to increased transcription. From transient transfection analyses using various BSP promoter-luciferase constructs, a FGF2 response element (FRE) (nts -92 to -85, "GGTGAGAA") was identified as a target of transcriptional activation by FGF2. Ligation of two copies of the FRE 5' to an SV40 promoter was sufficient to confer FGF responsive transcription. A sequence-specific protein-DNA complex, formed with a double-stranded oligonucleotide encompassing the FRE and nuclear extracts from ROS 17/2.8 cells, but not from fibroblasts, was increased following FGF2 stimulation. Several point mutations within the critical FRE sequence abrogated the formation of this complex and suppressed both basal and FGF2-mediated promoter activity. Thus, we have identified a novel FRE within the proximal promoter of the BSP gene that mediates both constitutive and FGF2-induced BSP transcription.
Bone sialoprotein (BSP), an early marker of osteoblast differentiation, has been implicated in the nucleation of hydroxyapatite during de novo bone formation. Basic fibroblast growth factor (FGF2) is recognized as a potent mitogen for a variety of mesenchymal cells. In skeletal tissues, FGF2 produced by osteoblasts accumulates in the bone matrix and acts as an autocrine/paracrine regulator of bone cells. To determine the molecular mechanism of FGF2 regulation of osteogenesis, we have analyzed the effects of FGF2 on the expression of BSP in the rat osteosarcoma cell line ROS 17/2.8. FGF2 at 10 ng/ml, increased BSP mRNA levels approximately 4-fold; the stimulation was first evident at 3 hr, reached maximal levels at 6 hr. The stability of the BSP mRNA was not significantly affected by FGF2, suggesting that the increased mRNA was due to increased transcription. From transient transfection analyses using various BSP promoter-luciferase constructs, a FGF2 response element (FRE) (nts -92 to -85, "GGTGAGAA") was identified as a target of transcriptional activation by FGF2. Ligation of two copies of the FRE 5' to an SV40 promoter was sufficient to confer FGF responsive transcription. A sequence-specific protein-DNA complex, formed with a double-stranded oligonucleotide encompassing the FRE and nuclear extracts from ROS 17/2.8 cells, but not from fibroblasts, was increased following FGF2 stimulation. Several point mutations within the critical FRE sequence abrogated the formation of this complex and suppressed both basal and FGF2-mediated promoter activity. Thus, we have identified a novel FRE within the proximal promoter of the BSP gene that mediates both constitutive and FGF2-induced BSP transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.