Oocyte growth, maturation, and activation are complex processes that include transcription, heterochromatin formation, chromosome condensation and decondensation, two consecutive chromosome separations, and genomic imprinting. The objective of this study was to investigate changes in histone H3 modifications in relation to chromatin/chromosome morphology in pig oocytes during their growth, maturation, and activation. During the growth phase, histone H3 was acetylated at lysines 9, 14, and 18 (K9, K14, and K18), and became methylated at K9 when the follicles developed to the antral stage (oocyte diameter, 90 mm). When the fully grown oocytes (diameter, 120 mm) started their maturation, histone H3 became phosphorylated at serine 28 (S28) and then at S10, and deacetylated at K9, K14, and K18 as the chromosomes condensed. After the electroactivation of mature oocytes, histone H3 was reacetylated and dephosphorylated concomitant with the decondensation of the chromosomes. Histone H3 kinase activity increased over a similar time course to that of the phosphorylation of histone H3-S28 during oocyte maturation, and this activity decreased as histone H3-S10 and H3-S28 began to be dephosphorylated after the activation of the mature oocytes. These results suggest that the chromatin morphology of pig oocytes is regulated by the acetylation/deacetylation and the phosphorylation/dephosphorylation of histone H3, and the phosphorylation of histone H3 is the key event in meiotic chromosome condensation in oocytes. The inhibition of histone deacetylase with trichostatin A (TSA) inhibited the deacetylation and phosphorylation of histone H3, and chromosome condensation. Therefore, the deacetylation of histone H3 is thought to be required for its phosphorylation in meiosis. Although histone H3 acetylation and phosphorylation were reversible, the histone methylation that was established during the oocyte growth phase was stable throughout the course of oocyte maturation and activation.
We can detect MYCN amplification of tumor tissue noninvasively and quantitatively by measuring the MYCN copy number in blood plasma. Determination of MYCN copy number in plasma may be useful when evaluating surgery and neoadjuvant chemotherapy.
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.
Abstract. The low percentage of human mesenchymal stem cells (hMSCs) in bone marrow necessitates their in vitro expansion prior to clinical use in regenerative medicine. We evaluated the effect of long-term culture of hMSCs on telomere length and transformation capacity by TERT transfection. hMSCs were isolated from the bone marrow aspirates of 24 donors and cultured with fibroblast growth factor-2 (FGF-2). Six cell lines with >500 population doubling levels were considered immortalized. TERT was transfected into two of the six lines for a comparison of telomere length, telomerase activity, differential capacity, colony formation capacity in soft agar and tumorigenicity in immunodeficient (NOD-SCID) mice. hMSC lines exhibited elongated telomeres without the activation of telomerase and retained multi-lineage differentiation potential upon chondrogenic or adipogenic differentiation, while non-immortalized hMSCs showed a marked reduction in telomere length in the differentiation process. Immortalized hMSCs showed anchorage-independence and formed tumors in NOD-SCID mice. Histologically, these tumors consisted of differentiated cells such as fat tissue and cartilage. Two TERTtransfected hMSC lines showed high rates of tumor formation in NOD-SCID mice. These tumors were histologically similar to teratocarcinoma without differentiated cells. These cells may provide a model for the origin of cancer stem cells from adult stem cells, and indicate the possibility that telomerase activation has a major role in the malignant transformation of human stem cells. These data suggest that adult hMSCs have a potential for neoplastic transformation and have implications for the use of hMSCs in tissue engineering and regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.