Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the balance between production and the consumption of H2O2, the later of which is a function of [H2O2] and follows first order kinetics. Here we test the hypothesis that isolated skeletal muscle mitochondria, from the rat, are able to modulate [H2O2] based upon the interaction between the production of ROS, as superoxide/H2O2, and the H2O2 decomposition capacity. The compartmentalization of detection systems for H2O2 and the intramitochondrial metabolism of H2O2 leads to spacial separation between these two components of the assay system. This results in an underestimation of rates when relying solely on extramitochondrial H2O2 detection. We find that differentiating between these apparent rates found when using extramitochondrial H2O2 detection and the actual rates of metabolism is important to determining the rate constant for H2O2 consumption by mitochondria in kinetic experiments. Using the high rate of ROS production by mitochondria respiring on succinate, we demonstrate that net H2O2 metabolism by mitochondria can approach a stable steady-state of extramitochondrial [H2O2]. Importantly, the rate constant determined by extrapolation of kinetic experiments is similar to the rate constant determined as the [H2O2] approaches a steady state.
Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively), the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL), was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red) muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis) with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and the lake sturgeon (Acipenser fulvescens)] and the rat. At a common assay temperature (25°C) rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C) but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.
Mitochondria are widely recognized as a potential source of reactive oxygen species (ROS); however, mitochondria also possess a strong capacity for ROS consumption that is often underappreciated. In skeletal muscle the glutathione and thioredoxin based peroxidase systems are likely the major H2O2 consumption pathways. Here we demonstrate the thioredoxin‐based pathway is the major H2O2 consumer in isolated rat skeletal muscle mitochondria. Unlike 1‐chloro‐2,4‐dinitrobenzene, the thioredoxin reductase inhibitor auranofin does not elevate ROS production in disrupted membranes that are devoid of the capacity to consume H2O2. Inhibition of thioredoxin reductase with auranofin leads to a marked increase in apparent ROS production but no change in mitochondrial bioenergetic characteristics (oxygen consumption, membrane potential, %NAD(P)H). Moreover, auranofin also inhibits the capacity for H2O2 consumption by isolated mitochondria and does not appear to act through the inhibition of the glutathione reduction system. We conclude that the apparent increase is H2O2 release by treatment with auranofin is due to impaired matrix level thioredoxin‐dependent H2O2 consumption and not reflective of an activation of ROS production.
Grant Funding Source: Supported by Canada Research Chairs (CRC), CFI, Manitoba Research and Innovation Fund and NSERC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.