Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 μg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.
BACKGROUND Mechanisms underlying early reproductive loss in the human are beginning to be elucidated. The migratory and invasive capacity of human endometrial stromal cells (ESCs) is increasingly recognized to contribute to the intense tissue remodelling associated with embryo implantation, trophoblast invasion and endometrial regeneration. In this review, we examine the signals and mechanisms that control ESC migration and invasion and assess how deregulation of these cell functions contributes to common reproductive disorders. METHODS The PubMed database was searched for publications on motility and invasiveness of human ESCs in normal endometrial function and in reproductive disorders including implantation failure, recurrent pregnancy loss (RPL), endometriosis and adenomyosis, covering the period 2000-2012. RESULTS Increasing evidence suggests that implantation failure and RPL involve abnormal migratory responses of decidualizing ESCs to embryo and trophoblast signals. Numerous reports indicate that endometriosis, as well as adenomyosis, is associated with increased basal and stimulated invasiveness of ESCs and their progenitor cells, suggesting a link between a heightened menstrual repair response and the formation of ectopic implants. Migration and invasiveness of ESCs are controlled by a complex array of hormones, growth factors, chemokines and inflammatory mediators, and involve signalling through Rho GTPases, phosphatidylinositol-3-kinase and mitogen-activated protein kinase pathways. CONCLUSIONS Novel concepts are extending our understanding of the key functions of ESCs in effecting tissue repair imposed by cyclic menstruation and parturition. Migration of decidualizing ESCs also serves to support blastocyst implantation and embryo selection through discriminate motile responses directed by embryo quality. Targeting regulatory molecules holds promise for developing new strategies for the treatment of reproductive disorders such as endometriosis and recurrent miscarriage; and harnessing the migratory capacity of progenitor mesenchymal stem cells in the endometrium may offer new opportunities in regenerative medicine.
In normal human placentation, uterine invasion by trophoblast cells and subsequent spiral artery remodeling depend on cooperation among fetal trophoblasts and maternal decidual, myometrial, immune and vascular cells in the uterine wall. Therefore, aberrant function of anyone or several of these cell-types could theoretically impair placentation leading to the development of preeclampsia. Because trophoblast invasion and spiral artery remodeling occur during the first half of pregnancy, the molecular pathology of fetal placental and maternal decidual tissues following delivery may not be informative about the genesis of impaired placentation, which transpired months earlier. Therefore, in this review, we focus on the emerging prospective evidence supporting the concept that deficient or defective endometrial maturation in the late secretory phase and during early pregnancy, i.e., pre-decidualization and decidualization, respectively, may contribute to the genesis of preeclampsia. The first prospectively-acquired data directly supporting this concept were unexpectedly revealed in transcriptomic analyses of chorionic villous samples (CVS) obtained during the first trimester of women who developed preeclampsia 5 months later. Additional supportive evidence arose from investigations of Natural Killer cells in first trimester decidua from elective terminations of women with high resistance uterine artery indices, a surrogate for deficient trophoblast invasion. Last, circulating insulin growth factor binding protein-1, which is secreted by decidual stromal cells was decreased during early pregnancy in women who developed preeclampsia. We conclude this review by making recommendations for further prospectively-designed studies to corroborate the concept of endometrial antecedents of preeclampsia. These studies could also enable identification of women at increased risk for developing preeclampsia, unveil the molecular mechanisms of deficient or defective (pre)decidualization, and lead to preventative strategies designed to improve (pre)decidualization, thereby reducing risk for preeclampsia development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.