No abstract
The effectiveness of convolutional neural networks stems in large part from their ability to exploit the translation invariance that is inherent in many learning problems. Recently, it was shown that CNNs can exploit other sources of invariance, such as rotation invariance, by using group convolutions instead of planar convolutions. However, for reasons of performance and ease of implementation, it has been necessary to limit the group convolution to transformations that can be applied to the filters without interpolation. Thus, for images with square pixels, only integer translations, rotations by multiples of 90 degrees, and reflections are admissible. Whereas the square tiling provides a 4-fold rotational symmetry, a hexagonal tiling of the plane has a 6-fold rotational symmetry. In this paper we show how one can efficiently implement planar convolution and group convolution over hexagonal lattices, by re-using existing highly optimized convolution routines. We find that, due to the reduced anisotropy of hexagonal filters, planar HexaConv provides better accuracy than planar convolution with square filters, given a fixed parameter budget. Furthermore, we find that the increased degree of symmetry of the hexagonal grid increases the effectiveness of group convolutions, by allowing for more parameter sharing. We show that our method significantly outperforms conventional CNNs on the AID aerial scene classification dataset, even outperforming ImageNet pretrained models.
This work introduces a diffusion model for molecule generation in 3D that is equivariant to Euclidean transformations. Our E(3) Equivariant Diffusion Model (EDM) learns to denoise a diffusion process with an equivariant network that jointly operates on both continuous (atom coordinates) and categorical features (atom types). In addition, we provide a probabilistic analysis which admits likelihood computation of molecules using our model. Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
Lossless compression methods shorten the expected representation size of data without loss of information, using a statistical model. Flow-based models are attractive in this setting because they admit exact likelihood optimization, which is equivalent to minimizing the expected number of bits per message. However, conventional flows assume continuous data, which may lead to reconstruction errors when quantized for compression. For that reason, we introduce a flow-based generative model for ordinal discrete data called Integer Discrete Flow (IDF): a bijective integer map that can learn rich transformations on high-dimensional data. As building blocks for IDFs, we introduce a flexible transformation layer called integer discrete coupling. Our experiments show that IDFs are competitive with other flow-based generative models. Furthermore, we demonstrate that IDF based compression achieves state-of-the-art lossless compression rates on CIFAR10, ImageNet32, and ImageNet64. To the best of our knowledge, this is the first lossless compression method that uses invertible neural networks. * Now at Google Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.