Human mesenchymal stem cells (hMSCs) remodel or regenerate various tissues through several mechanisms. Here, we identified the hMSC-secreted protein SCRG1 and its receptor BST1 as a positive regulator of self-renewal, migration, and osteogenic differentiation. SCRG1 and BST1 gene expression decreased during osteogenic differentiation of hMSCs. Intriguingly, SCRG1 maintained stem cell marker expression (Oct-4 and CD271/LNGFR) and the potentials of self-renewal, migration, and osteogenic differentiation, even at high passage numbers. Thus, the novel SCRG1/BST1 axis determines the fate of hMSCs by regulating their kinetic and differentiation potentials. Our findings provide a new perspective on methods for ex vivo expansion of hMSCs that maintain native stem cell potentials for bone-forming cell therapy.
Cell-cell adhesions induce various intracellular signals through hierarchical and synergistic molecular interactions. Recently, we demonstrated that a high cell density induces the expression of vascular cell adhesion molecule-1 (VCAM-1) through the nuclear factor-κB (NF-κB) pathway in human bone marrow-derived mesenchymal stem cells (MSCs). However, the specific molecules that activated the NF-κB pathway were not determined. In the present study, in experiments with receptor tyrosine kinase inhibitors, VCAM-1 expression was completely suppressed by platelet-derived growth factor (PDGF) receptor (PDGFR) inhibitors. In addition, VCAM-1 expression was significantly suppressed by knockdown with PDGFRβ siRNA, but not with PDGFRα siRNA. However, VCAM-1 expression did not increase following treatment with PDGF. The overexpression of N-cadherin, a structural molecule in adherence junctions in MSCs, promoted VCAM-1 expression and induced the marked phosphorylation of the intracellular signaling factor, Src. In addition, VCAM-1 expression and Src phosphorylation were reduced by the overexpression of a dominant negative mutant of N-cadherin. These results suggest that cell-cell adhesion, through N-cadherin, enhances the expression of VCAM-1 via PDGFRβ and the activation of Src in a ligand-independent manner in MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.