Humanized mice model human disease and as such are used commonly for research studies of infectious, degenerative and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limitations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmission and eradication of disease.
Treatment of HIV-1 ADA -infected CD34+ NSG-humanized mice with long-acting ester prodrugs of cabotegravir, lamivudine, and abacavir in combination with native rilpivirine was followed by dual CRISPR-Cas9 C-C chemokine receptor type five (CCR5) and HIV-1 proviral DNA gene editing. This led to sequential viral suppression, restoration of absolute human CD4 + T cell numbers, then elimination of replication-competent virus in 58% of infected mice. Dual CRISPR therapies enabled the excision of integrated proviral DNA in infected human cells contained within live infected animals. Highly sensitive nucleic acid nested and droplet digital PCR, RNAscope, and viral outgrowth assays affirmed viral elimination. HIV-1 was not detected in the blood, spleen, lung, kidney, liver, gut, bone marrow, and brain of virus-free animals. Progeny virus from adoptively transferred and CRISPR-treated virus-free mice was neither detected nor recovered. Residual HIV-1 DNA fragments were easily seen in untreated and viral-rebounded animals. No evidence of off-target toxicities was recorded in any of the treated animals. Importantly, the dual CRISPR therapy demonstrated statistically significant improvements in HIV-1 cure percentages compared to single treatments. Taken together, these observations underscore a pivotal role of combinatorial CRISPR gene editing in achieving the elimination of HIV-1 infection.
The HIV‐1 often evades a robust antiretroviral‐mediated immune response, leading to persistent infection within anatomically privileged sites including the CNS. Continuous low‐level infection occurs in the presence of effective antiretroviral therapy (ART) in CD4+ T cells and mononuclear phagocytes (MP; monocytes, macrophages, microglia, and dendritic cells). Within the CNS, productive viral infection is found exclusively in microglia and meningeal, perivascular, and choroidal macrophages. MPs serve as the principal viral CNS reservoir. Animal models have been developed to recapitulate natural human HIV‐1 infection. These include nonhuman primates, humanized mice, EcoHIV, and transgenic rodent models. These models have been used to study disease pathobiology, antiretroviral and immune modulatory agents, viral reservoirs, and eradication strategies. However, each of these models are limited to specific component(s) of human disease. Indeed, HIV‐1 species specificity must drive therapeutic and cure studies. These have been studied in several model systems reflective of latent infections, specifically in MP (myeloid, monocyte, macrophages, microglia, and histiocyte cell) populations. Therefore, additional small animal models that allow productive viral replication to enable viral carriage into the brain and the virus‐susceptible MPs are needed. To this end, this review serves to outline animal models currently available to study myeloid brain reservoirs and highlight areas that are lacking and require future research to more effectively study disease‐specific events that could be useful for viral eradication studies both in and outside the CNS.
Defining the latent human immunodeficiency virus type 1 (HIV-1) burden in the human brain during progressive infection is limited by sample access. Human hematopoietic stem cells (hu-HSCs)-reconstituted humanized mice provide an opportunity for this study. The model mimics, in measure, HIV-1 pathophysiology, transmission, treatment, and elimination in an infected human host. However, to date, brain HIV-1 latency in hu-HSC mice during suppressive antiretroviral therapy (ART) was not studied. To address this need, hu-HSC mice were administered long acting (LA) ART 14 days after HIV-1 infection was established. Animals were maintained under suppressive ART for 3 months, at which time HIV-1 infection was detected at low levels in brain tissue by droplet digital polymerase chain reaction (ddPCR) test on DNA. Notably, adoptive transfer of cells acquired from the hu-HSC mouse brains and placed into naive hu-HSC mice demonstrated viral recovery. These proof-of-concept results demonstrate replication-competent HIV-1 reservoir can be established in hu-HSC mouse brains that persists during long-term ART treatment. Hu-HSC mice-based mouse viral outgrowth assay (hu-MVOA) serves as a sensitive tool to interrogate latent HIV-1 brain reservoirs.
Reticulate evolutionary events are hallmarks of plant phylogeny, and are increasingly recognized as common occurrences in other branches of the Tree of Life. However, inferring the evolutionary history of admixed lineages presents a difficult challenge for systematists due to genealogical discordance caused by both incomplete lineage sorting (ILS) and hybridization. Methods that accommodate both of these processes are continuing to be developed, but they often do not scale well to larger numbers of species. An additional complicating factor for many plant species is the occurrence of whole genome duplication (WGD), which can have various outcomes on the genealogical history of haplotypes sampled from the genome. In this study, we sought to investigate patterns of hybridization and WGD in two subsections from the genus Penstemon (Plantaginaceae; subsect. Humiles and Proceri), a speciose group of angiosperms that has rapidly radiated across North America. Species in subsect. Humiles and Proceri occur primarily in the Pacific Northwest of the United States, occupying habitats such as mesic, subalpine meadows, as well as more well-drained substrates at varying elevations. Ploidy levels in the subsections range from diploid to hexaploid, and it is hypothesized that most of the polyploids are hybrids (i.e., allopolyploids). To estimate phylogeny in these groups, we first developed a method for estimating quartet concordance factors (QCFs) from multiple sequences sampled per lineage, allowing us to model all haplotypes from a polyploid. QCFs represent the proportion of gene trees that support a particular species quartet relationship, and are used for species network estimation in the program SNaQ (Solís-Lemus & Ané. 2016. PLoS Genet. 12:e1005896). Using phased haplotypes for nuclear amplicons, we inferred species trees and networks for 38 taxa from P. subsect. Humiles and Proceri. Our phylogenetic analyses recovered two clades comprising a mix of taxa from both subsections, indicating that the current taxonomy for these groups is inconsistent with our estimates of phylogeny. In addition, there was little support for hypotheses regarding the formation of putative allopolyploid lineages. Overall, we found evidence for the effects of both ILS and admixture on the evolutionary history of these species, but were able to evaluate our taxonomic hypotheses despite high levels of gene tree discordance. Our method for estimating QCFs from multiple haplotypes also allowed us to include species of varying ploidy levels in our analyses, which we anticipate will help to facilitate estimation of species networks in other plant groups as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.