We developed a new approach to study single- and double-stranded DNA breaks during chronic, moderate excitotoxicity resulting from the inhibition of the glutamate transporter in cerebellar granule cell primary cultures. A 24 hr treatment of 2-week-old cultures with L-alpha-amino adipate (LAA), an inhibitor of the cerebellar glutamate uptake transporter, caused a gradual extracellular accumulation of endogenous glutamate that induced reversible morphological change of granule neurons but no neuronal cell death despite sustained, but moderate, elevations of the free intracellular calcium concentrations. Nick translation experiments on isolated nuclei or cells from cerebellar cultures chronically exposed to LAA revealed increased radioactive nucleotide incorporation indicative of DNA nicking. This LAA effect was dose-dependent and suppressed by NMDA receptor antagonists. Cultures treated for 24 hr with LAA and subjected to in situ nick translation showed an intense nuclear labeling of neurons but not glia, which could be abolished by MK801. A similar labeling was also observed in altered nuclei of granule neurons acutely exposed to high glutamate concentrations or undergoing an apoptotic cell death. Although the TUNEL labeling method detected no DNA double-strand breaks in LAA-treated cerebellar cultures, it displayed clear evidence of DNA damage during acute glutamate excitotoxicity or during apoptosis. However, Southern blot analysis of nuclear DNA revealed a DNA laddering only in apoptotic cell death. Our results demonstrate that DNA damage, characterized by DNA single-strand breaks, is an early event in chronic, moderate excitotoxicity. This type of DNA degradation, which appears before any nuclear morphological changes, is distinct from the massive DNA single- and/or double-strand damages observed during acute glutamate excitotoxicity or apoptosis.
The calcium-activated protease calpain cleaves a variety of biologically important proteins and serves, therefore, as a key regulator of many cellular functions. Activation of both main isoforms, calpain 1 and calpain 2, was demonstrated previously in Alzheimer's disease. In this report, antibodies specifically recognizing the active form of calpain 2 were used to investigate calpain 2 activation in a broad range of neurodegenerative diseases, utilizing multiple-label confocal immunofluorescence imaging. With rare exceptions, the active form of calpain 2 was found in colocalization with hyperphosphorylated tau protein. Aggregates of mutated huntingtin, alpha-synuclein, or unidentified protein in motor neuron disease type of frontotemporal dementia were always negative. These findings indicate that calpain 2 activation is not a general response to protein aggregation. In tauopathies, more pathological inclusions were labeled for hyperphosphorylated tau than for activated calpain 2. The extent of colocalization varied in both a disease-specific and cell-type specific manner. The active form of calpain 2 was detected in 50-75% of tau neurofibrillary pathology in Alzheimer's disease, Alzheimer neurofibrillary changes and Down's syndrome, as well as in the accompanying Alzheimer-type tau pathology in diffuse Lewy bodies disease, progressive supranuclear palsy, and corticobasal degeneration. For glial cells, only 10-25% of tuft-shaped astrocytes, glial plaques, or coiled bodies contained activated calpain 2. The majority of Pick bodies were negative. The association of calpain 2 activation with hyperphosphorylated tau might be the result of an attempt by the calpain proteolytic system to degrade the tau protein aggregates. Alternatively, calpain 2 could be directly involved in tau hyperphosphorylation by modulating protein kinase activities. Overall, these results provide evidence of the important role of the calpain proteolytic system in the pathogenesis of neurodegenerative diseases with tau neurofibrillary pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.